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Agenda

• Workshop overview and logistics

• AePW-centric working groups

– High-Angle

– Large Deformation

– High Speed

• DPW-centric working groups

– Sources of DPW-7 Scatter

– Test Environment

• Hybrid working groups

– Static Deformation

– Buffet
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Workshop Logistics
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Date and Time

• Saturday, June 6 and Sunday, June 7

• Nominally 8:00 to 6:00

• Saturday

– Community-centric working groups

– Two separate rooms, agendas developed independently by each community

– 25 Years of DPW Celebration

• Sunday

– Everyone meets together in one room
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Registration

• Will be handled through the AIAA website
Early Member: $399

Early Non-Member: $549

Early Student: $99

Costs go up after early-bird deadline

Virtual: $299 (in person is strongly encouraged)

Planned to open in February or March

• Conference registration is not required for the workshop
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Presentations

• Participant presentations are planned for the workshop

• Handled outside of the AIAA conference abstract process

• Presentation-only

– Will be posted on the websites

– Ensure export compliance before presenting

– 10-25 minutes, depending upon working group and amount of your content

– One presentation should cover all solvers you used

– We’re evaluating whether we can do virtual presentations (not ideal)

• SciTech ‘27 will contain follow-on special sessions (either presentation only or 

paper/presentation)

• A virtual collection in a journal (e.g., Journal of Aircraft) is also planned
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DPW Sneak Peek

• 25 Years of DPW celebration

• Will include a few retrospective presentations

• Former organizing committee members have been invited

• Optional Saturday evening dinner (sponsors desired)
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High-Angle Working Group
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Working Group Update: AePW-4 High Angle

• Led by Pawel Chwalowski, NASA Langley

– We meet the 2nd Thursday of every month at 10 EST

• Focus on transonic aeroelastic flutter for the Benchmark 

Supercritical Wing (BSCW)

– Tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) in the 

early 1990s, as part of the Benchmark Models Program

– A rigid rectangular wing attached to a pitch and plunge 

apparatus (PAPA)

– Experimental flutter points at a range of Mach and AoAs

– Finite element model as well as a family of unstructured meshes 

are available

• BSCW is currently tested in TDT: (uPSP, PIV, sweep of Mach 

and AoAs)
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High Angle WG: Workshop Cases

• Case 1

– 3D wing flutter prediction at Mach 0.80 and angle-of-attack sweep: 0º - 6º

• Case 2

– 3D wing flutter prediction at Mach 0.74, 0.76, 0.78 and angle-of-attack 3º

• Case 3

– 2D wing flutter prediction at Mach 0.80 and angle-of-attack sweep: 0º - 6º

We have about 10 teams performing flutter calculations
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High Angle WG: Workshop Cases

• Case 1

– 3D wing flutter prediction at Mach 0.80 and angle-of-attack sweep: 0º - 6º

Dansberry et. al., 1993
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High Angle WG: Workshop Cases

• Case 1

– 3D wing flutter prediction at Mach 0.80 and angle-of-attack sweep: 0º - 6º

Dansberry et. al., 1993
Stanford et. al., 2024
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High Angle WG: Key Questions

• What is the current predictive capability of transonic flutter?

– Are uRANS solutions sufficient to predict flutter at BSCW experimental conditions considering 

a separated flow?

– How do we determine uncertainty in our analyses, considering nonlinear aerodynamic 

model, linear structural dynamics model, the coupling between models, and the 

experimental data?

• Is there a quantifiable relationship between the shock buffet and the flutter onset?

• Will additional experimental data help to assess the shock motion and the separated 

flow features near flutter?

• Is the reduction of spatial dimension from 3D to 2D helpful in BSCW flutter analysis?



16AIAA SciTech  |  January, 2026

Large Deformation Working Group



17AIAA SciTech  |  January, 2026

Working Group Update: AePW-4 Large Deformation

• Led by Rafa Palacios, Imperial College

– We meet the 3rd Thursday of every month at 10 EST

• Focus on the Pazy very flexible benchmark wing and its 

swept variants

– Designed and tested at the Technion

– ~600mm span wing with thin Aluminum spar and printed 

Nylon chassis

– CAD and Finite element models are available

– Extensive wind tunnel data available at flutter, post-flutter, 

LCO, and (coming soon!) sub-critical flutter

Revivo and Raveh, SciTech 2025

S20             S10         Pazy
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Small and Large Amplitude LCO of the S10 wing
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Large Deformation WG: Key Questions

• What are the unique aeroelastic phenomena of very flexible 

structures that undergo large deformations?

– Flutter around large-deflection equilibrium, post-flutter behaviors       

(e.g.,  small/large amplitude LCO)

– How do these vary for different geometries and boundary conditions?

• For swept flexible wings, how is flutter affected by

– Aerodynamic sweep

– Structural bending-torsion coupling  

– Wing deformation

• What are adequate structural/aerodynamic (steady and unsteady) 

models?

– For straight/swept wings, flutter onset, small/large amplitude LCO

– Recommendations for a production environment
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Large Deformation WG: Workshop Cases

• Swept wing flutter prediction 

– S10 and S20 swept wings in LE/TE weight configurations

• Post-flutter / LCO response characterization

– Straight Pazy wing

– S10 and S20 swept wings

• Subcritical flutter prediction

• Potentially a large-amplitude gust response case
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Large Deformation WG: Progress

• 72 members in mailing list

• Monthly tag-ups on the third Thursday of the month (since April 24)

• Repo with meeting presentations and videos hosted at Imperial. Contact Rafa 

Palacios @ Imperial College

• Active contributors (with apologies if I miss anyone):

LDWG contact: r.palacios@imperial.ac.uk 

(individual)

Imperial College

Kaunas University of Technology

Indian Institute of Science

Sapienza University of Rome

French Air Force and Space Academy

University of Michigan

ZHAW

Technion

University of Pittsburgh

Polytechnique Montreal

University of Michigan

University of São Paulo

Georgia Institute of Technology

NASA

mailto:r.palacios@imperial.ac.uk
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High-Speed Working Group
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Working Group Update: AePW-4 High Speed

• Led by Kirk Brouwer, AFRL/RQHS SSC

• Focus on two challenge problems

– RC-19: Large-amplitude, nonlinear dynamics of a thin panel with/without SBLI

– HyMAX: Linear response of a cantilevered plate to transitional/separated SBL

UNSW HyMAX Schlieren
AFRL RC-19 Setup
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High-Speed WG: Progress

• Current participation: 109 members on the email chain

– 8 groups working on RC-19, 5 groups working on HyMAX

• Monthly tag-ups on the 4th Thursday of the month 

• HSWG off-cycle relative to other AePW groups

– First workshop at SciTech 2023 (2024/2025 informal meetups)

• Near term: Wrap up current iteration at Aviation 2026 Workshop (present 
results/lessons learned)

• Long term: Selection of follow-on challenge problem

AFRL-

SSC
Duke NASA DLR UNSW MIT Stevens UC/ARL Metacomp Hexagon Technion

RC-19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

HyMAX ✓ ✓ ✓ ✓ ✓
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HSWG Key Questions

Objective: Assess the SoA of aerothermoelastic toolsets in high-speed applications

 What are the physical mechanisms that drive the various types of aerothermoelastic 
instabilities in high-speed flows?

 How accurately can dynamic aerothermoelastic instabilities be calculated? 
(Identifying onset of the instability vs the post-threshold behavior)

 Develop guidelines/metrics for modeling instabilities: What level of model fidelity is 
required? How much accuracy is lost when using lower fidelity methods?

 What is the uncertainty in our models? How does uncertainty propagate when 
coupling multiple models?

 What are the gaps/uncertainties in current experimental datasets that need to be 
addressed with follow-on or new experiments?

 How well do the SoA models handle complex structures and flow environments 
(transition, separation, SBLI, 3-D effects)?
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HSWG Future Directions

 AFRL-Supported AE/ATE Experiments (Packaged consistent with RC-19 challenge 

problem):

 RC-19 updates: Separated SBLI with snap-through & swept, attached SBLI with multiple instabilities

 M6HRF: Compliant panel tests with quasi-static and dynamic responses (Led by Zach Riley)

 H2K: Separated (transitional/turbulent) SBLI-induced aeroelastic experiments (Collaboration with DLR)

 Variations of HyMAX

 Plans to test a similar configuration to HyMAX in the AFRL M6HRF

 Will allow for longer flow times, O(min), with the potential to observe flutter in the presence of thermal 

effects

 Other experiments/Inputs from AePW HSWG participants/AIAA FSI DG?

 Compliant panel experiments at NCSU lead by Prof. Narayanaswamy (Collaborators at Duke – Prof. 

Dowell) 
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Sources of DPW-7 Scatter Working Group
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Source of Scatter – Motivation

• Seek to identify deviations in DPW-7 CRM data

• Significant spread in solvers post pitchup (all submissions plotted)

Curves collapsed to 

match experimental 

data near cruise point

Image source: 

Tinoco, E., et al., “Summary Data from the Seventh AIAA CFD Drag Prediction Workshop,” AIAA 2023-3492
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• Three test cases examined so far
– Test Case 1a: ONERA OAT15A 

▪ Establish initial level of scatter
– Test Case 1b: Joukowksi Airfoil
▪ Order of accuracy check

– Test Case 1c: ONERA OAT15A

▪ Reduced scatter
– Test Case 3: W1/W2 from DPW3

▪ Reduced scatter

• Future test case
– Test Case 2: CRM Wing/Body Cruise

▪ Examine scatter for 3D and QCR2000

• Sustained meeting cadence and structure
– Approx 20 people on distribution list
– Average 5-10 attendees in each meeting
– Meeting Tuesdays 10am ET on 2nd and 4th week of the month

Sources of Scatter – Overview
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• Validation of steady CFD analysis, required 

• Users are encouraged to employ best practices

• Settings
– Steady CFD (e.g., RANS)

– Prefer some version of SA, multiple turbulence models can be submitted

– Purely 2D simulations (one cell wide)

• Grids
– Six-member RANS grid family; four are required, six are desirable

– Encourage use of committee-supplied grids; user-generated grids are acceptable

– Committee-supplied grid is one cell wide with a 230mm chord (same as experiment) and 

follows RANS best practices

• Conditions
– Mach 0.73, Rec=3m (based on chord length), Tstatic= 271 K (487.8 R)

– Alpha: 1.36, 1.50, 2.50, 3.00, 3.10

Test Case 1a: Workshop-Wide Validation

Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic 

Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

ONERA OAT15A Transonic Airfoil
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ONERA OAT15A 𝑪𝑫 Convergence: 𝜶 = 𝟏. 𝟓∘

20 counts
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ONERA OAT15A 𝑪𝒑 and 𝑪𝒇: 𝜶 = 𝟏. 𝟓∘
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• Validation of steady CFD analysis, required 
– https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf

• Settings

– Steady CFD RANS French Vanilla SA-[neg] (All terms!)

▪ Adiabatic Wall (not isothermal)

▪ Characteristic Farfield (100 chords away - no circulation)

▪ Use periodic boundary conditions for sidewall boundary conditions

– Converge residuals to machine precision (~1e-10)

• Grids

– Committee-supplied grid family (High-Fidelity CFD Verification Workshop 2024)

• Conditions

• Sutherland’s Law

Test Case 1b: Joukowski Airfoil

Mach Rec Tstatic 𝜶 𝜸 Pr Prt Farfield 𝝌 = ෥𝝂/𝝂

0.15 6 × 106 520.0 R 0.0∘ 1.4 0.72 0.9 3

𝜇 𝑇 = 𝜇0

𝑇

𝑇0

3/2
𝑇0 + 𝑆

𝑇 + 𝑆

𝜇0 = 1.716 × 10−5
kg

𝑚 𝑠
𝑇0 = 491.6∘ 𝑅 
𝑆 = 198.6∘ 𝑅

𝜇 𝑇

𝜇𝑟𝑒𝑓
=

𝑇

𝑇𝑟𝑒𝑓

3/2
1 + 𝑆/𝑇𝑓𝑒𝑓

𝑇/𝑇𝑓𝑒𝑓 + 𝑆/𝑇𝑓𝑒𝑓

https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf
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Test Case 1b: Joukowski Airfoil Mesh

• Cusped trailing edge – remove inviscid singularity

• Zero angle of attack – stagnation point at leading edge

• Custom mesh to observe order of accuracy (Joukowski conformal mapping)
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Joukowski 𝑪𝑫 Convergence

0.05 counts
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Joukowski Airfoil – Order of Accuracy
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• Verification of steady CFD analysis, required 

• Settings

– Steady CFD RANS French Vanilla SA-[neg] (All terms!)

▪ Adiabatic Wall (not isothermal)

▪ Characteristic Farfield (1000 chords away)

▪ Use periodic boundary conditions for sidewall boundary conditions

– Converge residuals to machine precision (~1e-10)

• Grids

– Six-member grid family; four are required, six are desirable

– Encourage use of committee-supplied grids; user-generated grids are acceptable

▪ Cadence Structured/Unstructured, Helden Mesh Unstructured

• Conditions

• Sutherland’s Law

Test Case 1c: ONERA OAT15A Airfoil

Mach Rec Tstatic 𝜶 𝜸 Pr Prt Farfield 𝝌 = ෥𝝂/𝝂

0.73 3 × 106 271 K (487.8 R) 1.5∘ 1.4 0.72 0.9 3

𝜇 𝑇 = 𝜇0

𝑇

𝑇0

3/2
𝑇0 + 𝑆

𝑇 + 𝑆

𝜇0 = 1.716 × 10−5
kg

𝑚 𝑠
𝑇0 = 491.6∘ 𝑅 
𝑆 = 198.6∘ 𝑅

𝜇 𝑇

𝜇𝑟𝑒𝑓
=

𝑇

𝑇𝑟𝑒𝑓

3/2
1 + 𝑆/𝑇𝑓𝑒𝑓

𝑇/𝑇𝑓𝑒𝑓 + 𝑆/𝑇𝑓𝑒𝑓

Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic 
Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

ONERA OAT15A Transonic Airfoil
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ONERA OAT15A 𝑪𝑫 Convergence: 𝜶 = 𝟏. 𝟓∘
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ONERA OAT15A 𝑪𝑫 Participant Improvements

011 012Dashed: 1a
Solid: 1c
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ONERA OAT15A 𝑪𝑫 Convergence: 𝜶 = 𝟏. 𝟓∘
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ONERA OAT15A 𝑪𝒑 and 𝑪𝒇 𝜶 = 𝟏. 𝟓∘
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• DPW-III: Wing-Only Test Case

– W1 & W2, incremental comparison

• DPW-8: Scatter WG

– Revisit W1/W2 case to measure the progress over 20 years

• Grids

– Cadence Tet/Voxel Farfield, Helden Mesh Anisotropic Tet, 

Adapted

Test Case 3: DPW-III W1 (20 years later)

DPW-III: W1
IGES surfaces

multi-piece

wing-tip surface

DPW-8: W1
BREP Solid w/ far

Field and cleaned

Up wing-tip surface
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W1 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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W1 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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W1 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘

260M
5M
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W1 Mach: 𝜶 = 𝟎. 𝟓∘

Cadence Tet Cadence Voxel Helden Aniso
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W1 Mach: 𝜶 = 𝟎. 𝟓∘

Cadence Tet Cadence Voxel Helden Aniso
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W1 𝑪𝑫 Oddities



51AIAA SciTech  |  January, 2026

W1/W2 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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W1/W2 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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W1/W2 𝑪𝑫 and  𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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W1/W2 𝚫𝑪𝑫 and  𝚫𝑪𝑳 Convergence: 𝜶 = 𝟎. 𝟓∘
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• Verification of steady CFD analysis, required 

• Settings

– Steady CFD RANS French Vanilla SA-[neg] vs QCR2000 (All terms!)

▪ Adiabatic Wall (not isothermal)

– Converge residuals to machine precision (~1e-10)

• Grids: https://www.aiaa-dpw.org/DPW8/Scatter/Test_Case_2
– NASA CRM geometry including deformed wing matching condition

▪ (L1:Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)

▪ Six-member grid family; four are required, six are desirable

– Encourage use of committee-supplied grids; user-generated grids are acceptable

• Reference Units

• Conditions

• Sutherland’s Law

Test Case 2a: Wing/Body Cruise

Mach Rec 𝜶 Tstatic (120° F) 𝜸 Pr Prt Farfield 𝝌 = ෥𝝂/𝝂

0.85 5 × 106 2.50∘ 579.67 R  |  322.04 K 1.4 0.72 0.90 3

𝜇 𝑇 = 𝜇0

𝑇

𝑇0

3/2
𝑇0 + 𝑆

𝑇 + 𝑆

𝜇0 = 1.716 × 10−5
kg

𝑚 𝑠
𝑇0 = 491.6∘ 𝑅 𝑆 = 198.6∘ 𝑅

𝜇 𝑇

𝜇𝑟𝑒𝑓
=

𝑇

𝑇𝑟𝑒𝑓

3/2
1 + 𝑆/𝑇𝑓𝑒𝑓

𝑇/𝑇𝑓𝑒𝑓 + 𝑆/𝑇𝑓𝑒𝑓

Comparison Data
NTF197: r44,r51,r53

NTF215: r43,r103

NTF229: r296,r300,r302

Ames216: r35,r126,r130,r133

Sref (semi-span grid) Cref Semispan Moment Center

297360.0 sq.in 278.5 in 1156.75 in (1325.90, 0.00, 177.95)

https://aiaa-dpw.org/DPW8/Scatter/Test_Case_2
https://aiaa-dpw.org/DPW8/Scatter/Test_Case_2
https://aiaa-dpw.org/DPW8/Scatter/Test_Case_2


56AIAA SciTech  |  January, 2026

• Test Case 1a: ONERA OAT15A
– Surprisingly large scatter!

• Test Case 1b: Joukowski
– Excellent agreement between participants
– Clear demonstration of 2nd-order accuracy (and higher!)

• Test Case 1c: ONERA OAT15A
– Reduction in scatter!

▪ Consistent Turbulence Model

▪ Consistent problem definition (nothing left to participants)

▪ Fairfield Distance

▪ Residual Convergence

• Test Case 3a: W1/W2 increment
– Looking better after 20 years!
– Need more participants…

• Test Case 2a: Wing/Body Cruise
– SA-[neg] vs SA-[neg]-QCR2000

• You want to Participate!
– Contact galbramc@mit.edu or Ben.J.Rider2@boeing.com

Conclusion

mailto:galbramc@mit.edu
mailto:Ben.J.Rider2@boeing.com
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dpwaiaa@gmail.com

Scatter Reduction Working Group
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• Marshall Galbraith, Massachusetts Institute of Technology

• Kevin Holst, University of Tennessee, Knoxville

• Ben Rider, The Boeing Company

Scatter Reduction Working Group Leadership
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Geometry/Grid Far Field Details
DPW7: iges files (box) Min Max +/- Range Range / MAC Range / Semispan

X (inch) -22440.9, 23838.6 23139.75 ~ 84.0 ~ 20.0

Y (inch) 0.0 35433.1 35433.1 ~ 128.6 ~ 30.6

Z (inch) -23405.5 23838.6 23838.6 ~ 86.5 ~ 20.6

DPW8: HeldenMesh (box) Min Max +/- Range Range / MAC Range / Semispan

X (inch) -55160.0 55160.0 55160.0 200.0 ~ 47.7

Y (inch) 0.0 55160.0 55160.0 200.0 ~ 47.7

Z (inch) -55160.0 55160.0 55160.0 200.0 ~ 47.7

DPW8: Cadence (box) Min Max +/- Range Range / MAC Range / Semispan

X (inch) -115582.5 118237.9 116910.2 ~ 424.2 ~ 101.1

Y (inch) 0.0 116834.7 116834.7 ~ 423.9 ~ 101.0

Z (inch) -115584.0 116018.1 115801.1 ~ 420.2 ~ 100.1

DPW7: JAXA (sphere) Min Max +/- Range Range / MAC Range / Semispan

X (MAC) -413.890 424.690 419.290 ~ 419.3 ~ 100

Y (MAC) 0.0 419.349 419.349 ~ 419.3 ~ 100

Z (MAC) -418.675 420.005 419.340 ~ 419.3 ~ 100

DPW7: Vassberg (sphere) Min Max +/- Range Range / MAC Range / Semispan

X (inch) -30328.203 32996.560 31662.382 ~ 114.8 ~ 27.4

Y (inch) 0.0 31664.519 31664.519 ~ 114.8 ~ 27.4

Z (inch) -31449.638 31865.992 31657.815 ~ 114.8 ~ 27.4

DPW7: NLR (sphere) Min Max +/- Range Range / MAC Range / Semispan

X (m) -2949.98 3050.00 2999.99 ~ 428.2 ~ 102.1

Y (m) 0.0 3000.00 3000.00 ~ 428.2 ~ 102.1

Z (m) -2995.1 3004.99 3000.05 ~ 428.2 ~ 102.1

https://dpw.larc.nasa.gov/DPW7/Vassberg_Grids.REV00/

https://dpw.larc.nasa.gov/DPW7/JAXA_Grids.REV00/

https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-

03-02_Version_01/DPW7geometries.zip

DPW8

DPW7

https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/

Helden_Grids.REV00/

https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/

Cadence_Grids.REV00/

https://dpw.larc.nasa.gov/DPW7/DLR_Grids.REV00/
DPW7: DLR (box) Min Max +/- Range Range / MAC Range / Semispan

X (m) -570.0 630.0 1200.0 ~ 171.3 ~ 40.9

Y (m) 0.0 900.0 900.0 ~ 128.5 ~ 30.6

Z (m) -594.5 605.5 1200.0 ~ 171.3 ~ 40.9

https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/

DPW7-NLR-grids/

DPW7: GGNS (box) Min Max +/- Range Range / MAC Range / Semispan

X (inch) -22400.0 22400.0 22400.0 ~ 81.2 ~19.4

Y (inch) 0.0 22400.0 22400.0 ~ 81.2 ~19.4

Z (inch) -22400.0 22400.0 22400.0 ~ 81.2 ~19.4

Adapted grids (not publicly released)

NASA CRM (Full Scale)

MAC =  275.8”

Semispan = 1156.75”

https://dpw.larc.nasa.gov/DPW7/Vassberg_Grids.REV00/
https://dpw.larc.nasa.gov/DPW7/JAXA_Grids.REV00/
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021-03-02_Version_01/DPW7geometries.zip
https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/Helden_Grids.REV00/
https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/Helden_Grids.REV00/
https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/Cadence_Grids.REV00/
https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/Cadence_Grids.REV00/
https://dpw.larc.nasa.gov/DPW7/DLR_Grids.REV00/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/DPW7-NLR-grids/
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Test Environment Working Group
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Test Case 1a: Workshop-Wide Validation

• Validation of steady CFD analysis, required 

• Users are encouraged to employ best practices

• Settings
– Steady CFD (e.g., RANS)

– Prefer some version of SA, multiple turbulence models can be submitted

– Purely 2D simulations (one cell wide)

• Grids
– Six-member RANS grid family; four are required, six are desirable

– Encourage use of committee-supplied grids; user-generated grids are acceptable

– Committee-supplied grid is one cell wide with a 230mm chord (same as experiment) and 

follows RANS best practices

• Conditions
– Mach 0.73, Rec=3m (based on chord length), Tstatic= 271 K (487.8 R)

– Alpha: 1.36, 1.50, 2.50, 3.00, 3.10 Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic 

Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

ONERA OAT15A Transonic Airfoil
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Test Case 2a: T&I Study (Wing/Body)

• CRM Wing/Body with Upper Swept Strut
1. Wing/Body (2.7% model scale in tunnel)

2. Wing/Body + Upper Swept Strut

▪ Wing deformed to matching condition (from DPW7)

▪ Aft strut surface (shown in yellow) replaces interface to arc sector

• Geometry
▪ https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip

▪ https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs

• Conditions & Reference Units

• Comparison metrics
▪ Forces / Moments

▪ Sectional CP distribution

▪ Residuals (Flow & Structural Solver)

Comparison Data
NTF197: r44,r51,r53

NTF215: r43,r103

NTF229: r296,r300,r302

Ames216: r35,r126,r130,r133

Sref (semi-span grid) Cref Semispan Moment Center

216.77544 sq.in 7.5195 in 31.23225 in (156.0003, 0.00, -0.00035)

Mach Rec Tstatic (120° F) 𝜶

0.85 5 × 106 579.67 R  |  322.04 K −1.50∘, 0.00∘, 1.50∘, 2.50∘, 2.75∘, 3.00∘, 3.25∘, 3.50∘, 3.75∘, 4.00∘, 4.25∘

https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
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Test Case 2b: T&I Study (Wing/Body/Tail)

• CRM Wing/Body with Upper Swept Strut
1. Wing/Body/Horizontal Tail  (2.7% model scale in tunnel)

2. Wing/Body/Horizontal Tail + Upper Swept Strut

▪ Wing deformed to matching condition (from DPW7)

▪ Aft strut surface (shown in yellow) replaces interface to arc sector

• Geometry
▪ https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip

▪ https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs

• Conditions & Reference Units

• Comparison metrics
▪ Forces / Moments

▪ Sectional CP distribution

▪ Residuals (Flow & Structural Solver)

Comparison Data
NTF197: r92,r97,r99

NTF215: 

NTF229: 

Ames216: 

Mach Rec Tstatic (120° F) 𝜶

0.85 5 × 106 579.67 R  |  322.04 K −1.50∘, 0.00∘, 1.50∘, 2.50∘, 2.75∘, 3.00∘, 3.25∘, 3.50∘, 3.75∘, 4.00∘, 4.25∘

Sref (semi-span grid) Cref Semispan Moment Center

216.77544 sq.in 7.5195 in 31.23225 in (156.0003, 0.00, -0.00035)

https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2025/07/DPW-7_WBT_IGES_in_low_q.zip
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
https://dpw.larc.nasa.gov/DPW8/Test_Environment/Test_Case_1/Geometry/Sting_No_Arc_Sector_Bulb_noRotation_2025_09_03.igs
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Test Case 2a: Preliminary Findings

• Preliminary steady-state RANS analysis has been performed using SAneg-RC-QCR2000

• Inclusion of the sting moves the wing shock forward reducing the lift and drag as well as 

the static stability of the aircraft

• Contour plots at 3-degrees AOA show the shock movement and integrated loads 
demonstrate the shift caused by the sting



79AIAA SciTech  |  January, 2026

NTF Geometry Available

• NTF Geometry is available:

– https://www.aiaa-dpw.org/ntf.html

Obstructions inside 

plenum around 

test section

Test Section View

Test Section View

plenum 

outer walls

https://www.aiaa-dpw.org/ntf.html
https://www.aiaa-dpw.org/ntf.html
https://www.aiaa-dpw.org/ntf.html
https://www.aiaa-dpw.org/ntf.html


80AIAA SciTech  |  January, 2026

Wind Tunnel Test Environment WG: Key Questions

• How much of the spread between experimental and computational results is 

due to the test environment?

• What methods are needed to quantify the effect of the mounting hardware on 

force/moment and pressure measurements?

• Can state-of-the-art methods accurately simulate the full NTF test section, 

including slots and gaps?
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Static Deformation Working Group
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Test Case 1b: FEM Validation

• Validation of Structural Model for NASA CRM
– Tap Test planned for comparison to normal mode solutions of FEM models

– Static Loads Tests will be conducted to compare deflection measurements (and maybe twist) 

to Linear Static FEM solutions

• Users are encouraged to employ best practices for selected FEM codes

• Settings
– Linear Eigenvalue Analysis (e.g. NASTRAN® SOL103)

• Conditions
– Rigid suspension at sting

• Grid
– MSC NASTRAN® solid 4-node tetrahedral finite-element structural model

– Model consists of 6.8·106 elements, 4.1·106 degrees-of-freedom

– Supplied by NASA Langley’s Configuration Aerodynamics Branch

– Wind tunnel sting will be added as beam model

NASA CRM 

Structural Model
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Static Deformation WG: FEMs

• Tet-blasted Nastran full-span FEM, clamped inside 

the fuselage in-between the wings (red cylinder)

– Created for DPW-5 by J. Moore at LaRC

– Used occasionally by participants since DPW-5, but 

never validated experimentally 

• Halved the model to accommodate half span CFD

– Not easy to do: the original FEM had elements that 

lived on both sides of the symmetry plane

• Created an equivalent beam model
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Static Deformation WG: Eq. Beam Verification

• Four unit (1-lb) vertical load cases:
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Test Case 2a: Wing/Body Deformation (cruise)

• CFD/FEM start from unloaded (wind-off) geometry/grid

• CRM Wing/Body
– Reynolds number: 5M (LoQ)

– Dynamic Pressure: Q∞ =1384 psf

– Mach number: 0.85(Mcruise)

– CL = 0.5000 +/- 0.0001 (Angle of Attack ~ 2.75 deg)

– Temperature: 120.0 F (579.67 R / 322.04 K)

– Reference Information: https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html

• Committee-supplied
– NASA CRM geometry in jig/unloaded condition

▪ Trip location – Wing: 10% chord upper/lower surface

– Grid Family: https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2

▪ L1:Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine

– NASA CRM finite-element model: https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2/FEM_Models

• Comparison metrics
– Forces / Moments   

– Sectional Twist / Deformation  

– Sectional CP distribution

– Residuals (Flow & Structural Solver)

Comparison Data
NTF197: r44,r51,r53

NTF197: r92,r97,r99 (WBT0)

NTF215: r43,r103

NTF229: r296,r300,r302

ETW ESWIRP: r164,r182,r153

Ames216: r35,r126,r130,r133

Measured Span Stations
η = (0.00,0.4286, 0.5546, 0.6773, 0.7954, 0.9150)

Grid: Level 1-6

https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2
https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2/FEM_Models
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Preliminary Aeroelastic Results

2y/b=0.31 2y/b=0.63 2y/b=0.95

L1 L2 L3
AoA 2.5448 2.5085 2.4956
CL 0.49997 0.50000 0.49999
CD 0.02607 0.02580 0.02570
CM -0.03450 -0.03680 -0.03767

• Mach 0.85, Re 5M, Q 1384 psf

• Aerodynamics Model: FUN3D

– RANS, SA-neg, QCR, stabilized finite element 

method

• Structural model: 1st 20 modes of semispan FEM

– Interpolated those mode shapes onto the CFD 

surface mesh with a radial-basis function

• Coupling: FUN3D coupled to a modal structural 

solver (which also lives inside FUN3D) in time

– Very large time steps, and structural modal 

damping set to a very large value, to encourage 

rapid convergence to a static aeroelastic 

solution

• 3-4 separate runs to find the AoA for CL=0.5
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Test Case 3: Wing/Body/Nacelle/Pylon

• CFD/FEM start from unloaded (wind-off) geometry/grid

• CRM Wing/Body/Nacelle /Pylon
– Reynolds number: 5M (LoQ)

– Dynamic Pressure: Q∞ =1384 psf

– Mach number: 0.85 (Mcruise)

– Angles of attack: -1.50, 0.00, 1.50, 2.75, 3.10, 3.50, 4.00, 4.50

– Temperature: 120.0 F (579.67 R / 322.04 K)

– Reference Information: https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html

• Committee-supplied
– NASA CRM geometry in jig/unloaded condition

▪ Trip location – Wing: 10% chord upper/lower surface

– Grid Family: https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2

▪ L1:Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine

– NASA CRM finite-element model: https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2/FEM_Models

• Comparison metrics
– Forces / Moments   

– Sectional Twist / Deformation  

– Sectional CP distribution

– Residuals (Flow & Structural Solver)

Grid: Level 3

Grid: Level 1-6

Measured Span Stations
η = (0.00,0.4286, 0.5546, 0.6773, 0.7954, 0.9150)

https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html
https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2
https://dpw.larc.nasa.gov/DPW8/Static_Deformation/Test_Case_2/FEM_Models
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Static Deformation WG: Key Questions

• What level of accuracy can be attained for transonic wing deformation calculations?

• What is the uncertainty in configuration force/moments due to aeroelastic deformation 

uncertainty?

• What are the most efficient/accurate methods for coupling the aero/structural 

computations?

– What are the computational time/accuracy savings between using a full fidelity vs reduced 

beam structural model?

– Do modal solutions compare well to direct fluid-structure mapping solutions?

– Does a full vs symmetry plane solution result in different solutions?

• What accuracy is lost by using a “lower fidelity” aerodynamic analysis method?
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Digital Image Correlation for FEM Validation

• April 2025: static loads test + tap test of the CRM model structure

• Digital image correlation (DIC) was used to track model deformation under 

loads, with a speckle pattern adhered to the two wings and fuselage

DIC data (colors) superimposed 

upon the FEM (gray)
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Structural Compliance Response Comparison

• Apply a series of point loads at a given 

span station

• DIC measures full-field displacement 

data, but we only look at vertical 

displacements at 6 points:

– 2Y/b = [-0.93, -0.64, -0.34, 0.34, 0.64, 0.93]

• At each point, we fit the DIC results to a 

linear curve, and the slope of that line is 

the compliance: in/lb

• Compare compliance at each point to 

the FEM result

load

largest compliance, b/c 
furthest away from wing root

~0 compliance → very little 
structural communication 

between starboard and port
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Structural Compliance Response Comparison
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Take-Aways

• The FEM is ~8% too stiff on the starboard side, but ~6% too 

flexible on the port side

• Testing uncertainties:

– We were worried about scratching the wing, and so applied 

the weight pan tip to a pad on the wing: this made it difficult 

to precisely measure the x/y/z of the load location

– There was a ton of rolling motion from the sting, both rigid-
body and flexible, and this had to be subtracted-off

• Another consideration: the FEM is ~7% stiffer on the 

starboard side than the port side: it’s unclear how realistic 

that is, and this test was not precise enough to validate it

loading 

point

most of what we measured 

was roll motion of sting, not 

flexible motion of the wing
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Buffet Working Group
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Test Case Overview

• Test Case 2

– Unsteady CFD, rigid wing

– Committee-supplied geometry (and grids) for four alphas

– Two pre-buffet alphas; two post-buffet alphas

– Experimental data: static pressure, Kulites, F&M,

wing deformation

• Test Case 3

– Unsteady CFD, dynamic wing

– Committee-supplied wind-off (“jig”) geometry and grid, stick-model FEM

– One pre-buffet alpha, one close to onset, one post buffet

– Experimental data: static pressure, Kulites, F&M, wing root strain gauge, uPSP
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Status & Lessons Learned

• Test Case 2

– Unsteady CFD, rigid wing

– Limited submissions to date makes definitive statements challenging as of today

– Work is ongoing by many groups

– URANS struggles (SA, SST, Reynolds-stress model)

– At times, post-buffet URANS simulations frequently indicate a RANS-like solution; 

isolated success in some solvers at moderate and fine grids

– Scale-resolving schemes show significant improvement

– Computational cost can be prohibitive (as expected)

• Test Case 3

– Unsteady CFD, dynamic wing

– Participants are making progress (see next slide)

– Some solvers do not have dynamic wing (FSI) capabilities
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Progress Toward Test Cases 2 and 3

Participant Test Case 2 Test Case 3

Company 1

Company 2

Company 3

Company 4

Government 1

Government 2

Government 3

Government 4

Government 5

Government 6

Academia 1

Academia 2

Academia 3
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Progress Toward Test Cases 2 and 3

Participant Test Case 2 Test Case 3

Company 1 In progress (nearly done)

Company 2 In progress

Company 3 In progress

Company 4 No

Government 1 In progress and also submitted

Government 2 In progress

Government 3 In progress

Government 4 In progress

Government 5 In progress

Government 6 Paused

Academia 1 Submitted

Academia 2 In progress (nearly done)

Academia 3 In progress
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Progress Toward Test Cases 2 and 3

Participant Test Case 2 Test Case 3

Company 1 In progress (nearly done) Interested

Company 2 In progress No

Company 3 In progress In progress

Company 4 No No

Government 1 In progress and also submitted No

Government 2 In progress Interested

Government 3 In progress Interested

Government 4 In progress No

Government 5 In progress In progress

Government 6 Paused Interested

Academia 1 Submitted Interested

Academia 2 In progress (nearly done) Interested

Academia 3 In progress Interested
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Participant Briefs
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Participant Briefs – JAXA

• Solver: FaSTAR, URANS (SA-R-QCR2000-comp)

• Tested sensitivities at 4.84 deg:

– Pointwise (L1-L3), HeldenMesh (L1-L3)

– Dt=0.01 vs 0.001; sub-it=30-120

– 1st vs 2nd Turbulent fluxes order

– Initialisation: uniform flow vs from RANS

• AoA sweep for PW-L3 and HM-L3

– Pre-buffet OK!

– Mostly no buffet, except for PW-L3

– Results quantitatively incorrect
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Participant Briefs – JAXA

• Are URANS hopeless?

– Maybe we are pushing it, when applying URANS far from buffet onset

– Linearized-URANS (Global Stability Analysis, GSA) predicts onset well 

– Mechanisms (buffet cells) are qualitatively and quantitatively in good 

agreement with the experiments
Buffet cells
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Participant Briefs – RMIT

• Michael Candon

• Royal Melbourne Institute of Technology
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Solver

CFD Solver Overview

• Cadence grids L1 and L3.

• Fluent 2025 R2 - coupled pressure-based solver.

• SIMPLE scheme.

• Reynolds Stress Model (stress-𝜔) 

• Δ𝑡 = 5.29 × 10−6 s -> 100 timesteps per CTU.  

• Δ𝑡 = 2.645 × 10−6 s -> 200 timesteps per CTU. 

• 10 or 20 sub-iterations / timestep

• Residuals 1e-5 - 1e-8

Baseline model:

• Convective fluxes (all): Second-order upwind

• Shear flow correction: On (default)

• Time Integration: Bounded second-order implicit 

Variant 1:

• Convective fluxes (all): Second-order upwind

• Shear flow correction: Off 

• Time Integration: Second-order implicit 

Variant 2:

• Convective fluxes (mean flow + 𝝎): Second-order upwind

• Convective fluxes (Reynolds stresses): Third-order MUSCL

• Shear flow correction: Off 

• Time Integration: Second-order implicit 

Lessons learned (brief)

• No one- or two-equation eddy viscosity models have buffeted (many 

variants tested, up to L4). 

• RSM stress-omega gets buffet (buffet cell too aggressive and 

upstream). 

• Turning off Shear flow correction helps with over prediction of 

separation. 

𝑀∞ = 0.85, 𝑝 = 49,880Pa,  𝑅𝑒𝑐 ≈ 1.51𝑀
𝛼0 = 5.89°
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Forces (𝛼0 = 5.89°)
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Pressure Coefficient (𝛼0 = 5.89°)

BASELINE

(L1 100/CTU)

BASELINE

(L3 100/CTU)
VAR 2

(L1 100/CTU)
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Numerical Methodology
LBM/VLES
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❑ SIMULIA PowerFLOW (v6-2025R2)

❑ Core scheme:

➢ 39-state LBM solver19 with Bhatnagar-Gross-Krook (BGK) collision model 20

➢ Spatial discretization: 2nd order accurate

➢ Time integration: explicit (𝐶𝐹𝐿 < 1)

➢ Initialization method: cold start

➢ Wall model: extended turbulent wall model, dynamically accounting for pressure gradients23

➢ SGS closure: RNG 𝑘-𝜖 turbulence model

o Recalibrate the collision model to characteristic turbulent flow time scales 21,22

o Eddy viscosity ratio was set to 𝜈𝑡/𝜈 = 0.3 (𝑙𝑡 = 5 𝜇m)

➢ Transition treatment: fully turbulent, with laminar patches on the leading edges and fuselage nose 
(upstream of the tripping)

➢ Variable cubic Cartesian grid + immersed boundary method 

➢ Simulation time: 100 CTUs (0.65 sec)
19 Nie X. et al. (2009) “A lattice-Boltzmann / finite-difference hybrid simulation of transonic flow.” 47th AIAA Aerospace Sciences Meeting, 5-8 January, Orlando, FL.
20 Bhatnagar et al. (1954) “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems.” Physical Review 94, p. 511-525
21 Chen, H. et al. (2003) “Extended-Boltzmann kinetic equation for turbulent flows.” Science 5633, p. 633-636.
22 Yakhot V. and Orszag S. A. (1986) “Renormalization group analysis of turbulence. I. Basic theory.” In: Journal of Scientific Computing 1(1), p. 3-51.
23 Fares E. and Noelting S. (2011) “Unsteady flow simulation of a high-lift configuration using a lattice Boltzmann approach.” 49th AIAA Aerospace Sciences Meeting, 4-7 January, Orlando, FL.
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Grid Configurations
Overview

108108

❑ Cartesian ‘in-house’ grid

➢ 14 variable resolution (VR) regions

➢ 5 refinement levels (x1.5)

➢ Isentropic voxels

Grid level
Finest 

∆𝑦𝑤 × 105
Total cell 

count
𝑦+

L1 182 21 M 250

L2 121 54 M 150

L3 81 156 M 100

L4 54 470 M 70

L5 36 1,500 M 40
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Results
Mean F&M, ഥ𝑪𝒑
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Results
𝑪𝒑’rms
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Results
𝑪𝒑’rms

 - difference between L3 to L5 @ 𝜶 = 𝟒. 𝟖𝟒° 
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Participant Briefs – Embraer

• Eduardo Molina, Joao Luiz Perez

• Embraer

Volcano ScaLES (v2025.09)

• Immersed Boundary WMLES

• 4th Order Kinetic Energy Preserving 

Discretization

• Explicit SSP 3rd Order Runge-Kutta

• Cartesian Recursive Octree Mesh

• Numerical Tripping

• Dynamic Smagorinsky Model

gridA+: approx. 670M elements

gridD+: approx. 1.1B elements
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AoA = 2.29◦ AoA = 4.84◦
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See you in June!
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Predict ion
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