DPW-8 & AePW-4 Workshop Update

Fall Workshop-Wide Tagup November 8, 2024

https://aiaa-dpw.larc.nasa.gov

https://nescacademy-d.larc.nasa.gov/workshops/AePW4/public

Agenda

- Welcome
- Background & Reminder
- Schedule
- Working Groups Update
 - DPW-Centric Working Groups
 - AePW-Centric Working Groups
 - Hybrid Working Groups
- Open Discussion

DPW-8 Motivation & Background

- Continue expanding the envelope
- Accurate aerodynamic prediction provides significant value throughout aircraft product life-cycle; design, certification, in-service support
- Drag prediction for a known geometry in steady (mostly attached) flow is generally achievable, but questions remain:
 - Confidence in the geometry?
 Jig shape is defined but deformed loaded shape is required for accurate predictions
 - Confidence in the evolution from steady to unsteady flow?
 When does unsteadiness begin and steady assumptions are no longer valid?
 - Source of the remaining scatter?
 Function of grid type, solver scheme, turbulence model
 - Unknown uncertainty from comparing free-air CFD to wind tunnel test data
 Some existing global corrections to upflow/forces/moments, tare & interference not quantified
 No corrections for spanwise variations to sectional pressures

DPW-8 Goals

- Build on past DPWs to improve confidence in aircraft performance prediction
- Mature the foundations required for accurate prediction
 - To accurately predict drag, we need confidence in numerical models
 - Building upon good models, we need accurate definition of geometry under load
 - Unsteady analysis requires confidence in unsteady schemes
- Determination of accuracy requires comparison to "truth"
 - Experimental data are one form of "truth" but can have significant differences that must be understood to make practical comparisons to CFD
- Leverage comprehensive experimental data sets for high-quality comparisons
- Increase student participation

AePW-4 Motivation and Background

- An open and impartial forum to assess and evaluate the current state-of-the-art and state-of-the-practice in computational aeroelastic modeling
 - How effective are current solvers at predicting aeroelastic physics critical to aircraft analysis and design?
 - Can we establish best-practices for using aeroelastic solvers?
 - How can we understand the reasons for why our solvers may fail?
 - Can we specify requirements on future validation experiments?
 - What computational and experimental areas of research need further development?
- Historically (AePW-1 and -2) was solely focused on transonic problems: unsteady CFD-based aerodynamics and aeroelasticity
- AePW-3 expanded to multiple WGs looking at a variety of flow regimes
- AePW-4 will continue in this same direction

DPW-8 and AePW-4 Co-Hosted Workshop

- Next generation of computational goals is highly multidisciplinary
- Enable technical advances to cutting edge in industry
 - DPW has expertise in transonic CFD
 - AePW has expertise in computational aeroelasticity at many flight regimes

- More than simply co-located workshops
- Multiple working groups
- Workshops overlap with a central goal and then specialize in other tasks specific to each community

Goals

- Benchmark methods performance between multiple codes and schemes
- Establish state of the art for static and dynamic FSI; identify opportunities for improvement

Experimentally-determined lofts from DPW-VII

Working Groups Layout

A Special Note For Students

- Students (undergrad and grads) are strongly encouraged to participate
- Workshop seeks to develop the student
- Minimize barrier to entry to submit data
 - Compute resources for students may be limited
 - All test cases do not need to be completed
 - Minimum for participation is one polar at one grid density
- Compute time and postprocessing licenses are available, if needed
- Contact dpwaiaa@gmail.com for more information

Nominal Schedule

- May 2024
 - Working groups begin
 - First test cases defined
- July 2024
 - AVIATION in-person meeting
- Fall 2024
 - Isolated data due
 - Additional test cases defined ?
- January 2025
 - Mini Workshop 1 (SciTech), hybrid
- June 2025
 - AVIATION in-person meeting

Summer 2025

Additional test case data may be due

Fall 2025

- Mini Workshop 2 (possibly), virtual

January 2026

SciTech in-person meeting

March 2026

Delivery of final data set (as needed)

June 2026

Two-day workshop at AVIATION

January 2027

SciTech Special Sessions, Orlando, FL

Working Groups Update

Data Submission Process

DPW Centric

- Source of Scatter Working Group
- Test Environment Working Group

AePW Centric

- High-Angle Working Group
- Large Deformation Working Group
- High-Speed Working Group

Hybrid

- Static Deformation Working Group
- Buffet Working Group

GitHub Repository

- One stop shop for all DPW-centric and hybrid groups data
 - Improves version control
 - Ensures all committee members are looking at the most recent data
- Public and outward-facing
- A top-level README.md identifies institutions, individuals, and codes

Working Groups Update

Data Submission Process

DPW Centric

- Source of Scatter Working Group
- Test Environment Working Group

AePW Centric

- High-Angle Working Group
- Large Deformation Working Group
- High-Speed Working Group

Hybrid

- Static Deformation Working Group
- Buffet Working Group

Sources of Scatter – Overview

Three test cases defined to varying degrees

- Test Case 1: ONERA OAT15A (now)
- Test Case 2: Joukowksi Airfoil
- Test Case 3: CRM Wing

Sustained meeting cadence and structure

- Approx 20 people on distribution list
- Average 15 attendees in each meeting
- Meeting Tuesdays 10am ET on 2nd and 4th week of the month
- Variety of committee-supplied and custom grids

Sources of Scatter – All Workshop Submissions

Sources of Scatter – Scatter Participants

- Scatter participants
 - 4 group submissions
 - 10 data sets
- Need more participation
 - Lots more scatter from full workshop

Test Environment

Working Group High Level Goal:

- Increase understanding and quantify expectations for comparisons between free-air

CFD and measured Wind Tunnel "truth"

Force/Moment balance and pressure tap measurements

Planning is on-going

- Phase 0: ONERA OAT15A Airfoil
- Phase 1: Tare & Interference from Model Mounting System
 - i. NASA CRM
 - ii. NASA CRM + Upper Swept Strut & Sting
 - iii. NASA CRM + Upper Swept Strut & Sting + Arc Sector
- Phase 2: Wind Tunnel Walls
 - i. NASA CRM
 - ii. NASA CRM + Wind Tunnel Walls
 - iii. NASA CRM + Wind Tunnel Walls + Upper Swept Strut & Sting + Arc Sector

National Transonic Facility

Test Environment Look Ahead

Potential Leader Identified

- If confirmed, WG meetings will commence in the next few weeks

Geometry Status

- NASA CRM geometry is available
- Upper Swept Strut and Sting Geometry verified as accurate representation
- NTF Tunnel Geometry, including arc-sector, is available

Grid Status

- TBD
- Comparison Data
 - TBD
- Meeting Schedule
 - TBD

Working Groups Update

DPW Centric

- Source of Scatter Working Group
- Buffet Working Group

AePW Centric

- High Angle Working Group
- Large Deformation Working Group
- High Speed Working Group

Hybrid

- Static Deformation Working Group
- Buffet Working Group

High Angle – Background

Led by Pawel Chwalowski, NASA Langley

- We meet the 2nd Thursday of every month at 10 ET

Focus on transonic aeroelastic flutter

- This WG dates back to AePW-1 (2012), AePW-2 (2019), and AePW-3 (2023)
- AePW-3 had also considered transonic buffet

Utilize the Benchmark Supercritical Wing (BSCW)

- Tested in the NASA LaRC Transonic Dynamics Tunnel (TDT) in the early 1990's, as part of the Benchmark Models Program
- A rigid rectangular wing attached to a pitch and plunge apparatus (PAPA)
- Experimental flutter points at a range of Mach and AoA's
- Finite element model available, as well as a family of unstructured meshes
- Scheduled to be tested again in TDT in summer of 2025 (uPSP, PIV, sweep of Mach and AoA's)

High Angle – Configuration / Data

BSCW inside Transonic Dynamics Tunnel test section

EXPERIMENTAL UNSTEADY PRESSURES AT FLUTTER ON THE SUPERCRITICAL WING BENCHMARK MODEL

Bryan E. Dansberry, Michael H. Durham*, Robert M. Bennett**, José A. Rivera*, Walter A. Silva*, and Carol D. Wieseman*; Structural Dynamics Division, NASA Langley Research Center, Hampton, VA 23681-0001 and David L. Turnock*

High Angle – Workshop Cases

- o AePW-1:
 - Steady-rigid and forced-oscillation cases at Mach 0.85, AoA = 5° √
- o AePW-2:
 - Forced-oscillation case at Mach 0.70, AoA = 3° √
 - Flutter prediction at Mach 0.74, AoA = 0° √
 - Unsteady-rigid, forced-oscillation, and flutter cases at Mach 0.85, 5° √ √ √
- o AePW-3:
 - Flutter prediction at Mach 0.80, AoA = 5° √
 - Shock-buffet case at Mach 0.80, AoA = 5° √

- ✓ Poor flutter prediction
- √ Good flutter prediction
- √ Mixed flutter prediction

- AePW-4: Mandatory case
 - Flutter prediction at Mach 0.80 and angle-of-attack sweep: 0° 6°
- AePW-4: Optional case
 - Flutter prediction at Mach 0.74, 0.76, 0.78 and angle-of-attack 3°

Large Deformation

- Led by Rafael Palacios, Imperial College
 - We meet the 3rd Thursday of every month at 11 ET
- Focus on low-speed aeroelastic problems with structural nonlinearities
 - Slender, high aspect ratio wings
 - The previous iteration of this WG (AePW-3) had considered
 Technion's Pazy Wing
 - Increased AoA → change in structural stiffness → shift in flutter boundaries
- The current iteration of this group is still deciding where to go next
 - Could continue with variations of the Pazy configuration
 - Or could consider Michigan's EASE configuration: high aspect ratio wing, with control surfaces, attached to a PAPA

EASE configuration

High Speed

- Led by Kirk Brouwer, US AFRL
 - We meet the 4th Thursday of every-other-month at 5pm ET
 - And the alternating months at 8am ET
- The current iteration of this group will continue with the same 2 test cases considered in AePW-3
 - AFRL's RC19 case: Mach-2 flow over a flexible panel
 - UNSW's HyMax case: wedge-based shock impingement on a cantilevered plate at Mach-6
- We've had work presented by Duke, MIT, NASA, UNSW, DLR
- The aeroelastic physics of these cases are very complex, expensive, and hard-to-predict
 - We are working to develop single-discipline unit cases
 - These will provide a collaborative opportunity with the AIAA High Speed FSI DG

RC19 simulations

HyMax configuration

Working Groups Update

DPW Centric

- Source of Scatter Working Group
- Buffet Working Group

AePW Centric

- High-Angle Working Group
- Large Deformation Working Group
- High-Speed Working Group

Hybrid

- Static Deformation Working Group
- Buffet Working Group

Static Deformation

Three test cases defined to varying degrees

- Test Case 1a: ONERA OAT15A (now)
- Test Case 1b: NASA CRM FEM Validation
- Test Case 2: CRM Wing/Body
- Test Case 3: CRM Wing/Body/Nacelle/Pylon

Sustained meeting cadence and structure

- More than 70 people on distribution list
- Average 20-25 attendees in each meeting
- Meeting Fridays 10am ET on 2nd week of the month
- Variety of committee-supplied and custom grids

Static Deformation Current Status

- Test Case 1a (ONERA OAT15A Airfoil)
 - RANS, essentially complete
 - Data submitted to GitHub successfully

 Goal is to inform later analysis and not necessarily exhaustively study the solutions

Static Deformation Look Ahead

- Test Case 1b (NASA CRM FEM Validation)
 - Validation data will be collected in the future
 - NASA CRM Model not available until December to conduct static load and tap tests
- Test Case 2 (CRM Wing/Body Deformation)
 - NASA CRM geometry (initialize from unloaded wing shape)
 - NASA CRM FEM available
 - Maintain consistency with published grid standards
 - Grids being prepared by Cadence, Helden, and NASA Ames
 - First look at grids later this month → looking for volunteers to test
 - Hope to finalize details by mid December
- Test Case 3 (CRM Wing/Body/Nacelle/Pylon Deformation)
 - NASA CRM geometry (initialize from unloaded wing shape)

Buffet – Overview

Three test cases defined to varying degrees

- Test Case 1: ONERA OAT15A (now)
- Test Case 2: CRM Fixed-Geometry and Unsteady CFD (roughly Spring and Summer 2024)
- Test Case 3: CRM Unsteady Fluid Structure
 Interaction (roughly Winter 2024 and Spring 2025)

Sustained meeting cadence and structure

- More than 100 people on distribution list
- Average 50 attendees in each meeting
- Includes monthly working group meetings and monthly subgroups by scheme (URANS, hybrid RANS+LES, WMLES & Beyond)
- Variety of committee-supplied and custom grids
- Starting to diverge from other working groups

Credit (both): Jeff Housman, NASA Ames

Buffet Current Status

- Test Case 1a
 - RANS, essentially complete
 - Data submitted to GitHub successfully
- Test Case 1b (Buffet Working Group Supplement)
 - Unsteady simulations, in final preparation
 - Standardized signal postprocessing methods

 Goal is to inform later analysis and not necessarily exhaustively study the solutions (to be done by the Scatter Working Group)

Buffet Look Ahead

Test Case 1 (ONERA OAT15A)

- Hopefully complete by end of November
- Later data submissions may happen

Test Case 2 (CRM Wing/Body/Tail, Unsteady CFD, Static Wing)

- Maintain consistency with published grid standards
- Experimentally-measured JAXA geometry
- Grids being prepared by Cadence, Helden, and Ames thanks!
- First look at grids later this month > looking for volunteers to test
- Plan to finalize details by mid December (so you can run over winter break)

Test Case 3 (CRM Wing/Body/Tail, Unsteady CFD, Dynamic Wing)

- CRM wing/body/tail
- Will be very challenging
- In the future

Key Questions

- Working Groups should identify and document the "Key Questions" that will attempt to be answered
 - High Lift PW leaders found this helps to provide focus and allows evaluation of progress made by the end of the workshop
- Example "Key Questions" for the Static Deformation Group
 - How accurately can transonic wing deformation be calculated?
 - What is the uncertainty in configuration force/moments due to aeroelastic deformation uncertainty?
 - What are the most efficient/accurate methods for coupling the aero/structural computations?
 - What are the computational time/accuracy savings between using a full fidelity vs reduced beam structural model?
 - Do modal solutions compare well to direct fluid-structure mapping solutions?
 - Does a full vs symmetry plane solution result in different solutions?
 - How much accuracy is lost by using a "lower fidelity" aerodynamic simulation (e.g., panel methods or vortex lattice)?

Workshop Structure

- Two full-day workshop at AVIATION '26
- First day
 - Community centric in two separate rooms
 - Technical lessons learned
 - Future plans
- Second day
 - Everyone together
 - Hybrid groups
 - Workshop lessons learned
 - Future plans

Website Content

- DPW site contains field-specific and shared data
 - Working Group pages for four DPW-focused groups
 - Geometry
 - Grids
 - Postprocessing data file templates
 - Experimental results
- AePW site is going live soon
- https://aiaa-dpw.larc.nasa.gov
- https://nescacademy-d.larc.nasa.gov/workshops/AePW4/public

Open Discussion

