

HPCMP CREATE[™]-AV Kestrel Simulations for the DPW-8/AePW-4 Buffet Working Group: Part 1

APA-31: DPW-8/AePW-4: Buffet Working Group – ONERA OAT15A Test Case Wednesday, 23 July 2025

Steven Lamberson – HPCMP CREATE-AV Brent Pomeroy, Tausif Jamal – NASA Langley Research Center

HPCMP CREATE[™]-AV Kestrel

- Multiphysics simulation code supporting US DoD fixed-wing programs of record
 - Full spectrum of flight conditions and missions
 - Full spectrum of aircraft/weapons types
 - Coupled physics: aerodynamics, thermochemistry, aero-heating, structural dynamics, propulsion, flight controls, 6-DoF motion w/ generalized constraints, separation/contact/collision
 - Easy for users to learn, use, customize, and extend

Problem Description

ONERA OAT15A transonic airfoil

- Mach 0.73, $\text{Re}_{c} = 3 \times 10^{6}$, $T_{\infty} = 271 \text{ K}$
- Experimental C_P and $RMS(C_P)$ available at several α

Workshop Problems

- Case 1a use a steady solver to solve at α = {1.36°, 1.50°, 2.50°, 3.00°, 3.10°, 3.25°, 3.40°, 3.50°, 3.60°, 3.90°}
- Case 1b use unsteady solver to solve at same α
 - Focus on grid level 3

Kestrel Setup

- Use workshop-provided unstructured grids from Cadence
- Look at both Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST) turbulence models
 - Both rotational/curvature correction and QCR 2020 turned on for both models
- Using Kestrel's "FN1+NN" expanded gradient stencil

Cadence Unstructured L6

CASE 1A

Steady Solver Results: SA

Steady Solver Results: SST

Steady Solver Results: C_P Distributions

CASE 1B

Unsteady Solver Time Step Study: α=3.90°, SA

- C_L, C_D, C_M all move noticeably as time step changes
- Increasing number of subiterations does not have significant impact on behavior

Unsteady Solver Time Step Study: α=3.90°, SST

• C_L, C_D, C_M all move noticeably as time-step changes, but less so than for SA

Subiterations matter

- 3 subiterations produce steady-ish behavior, 10 subiterations produce unsteady behavior

Unsteady Solver Time Step Study: α=3.90°, C_P

- For SA, no discernable difference between 3 and 10 subiterations
- For SST, 3 subiterations shows similar behavior to steady response, and 10 subiterations shows significantly improved comparison to experimental data

Conclusions

Case 1a – Steady Simulations (RANS)

- Conducted steady runs at all grid levels using both SA and SST.
- Both SA and SST simulations achieved reasonable comparisons to experimental data when comparing mean C_P distribution.
- The SA shock location tended to be further downstream than the SST shock location. The experimental shock location was between the two for lower α and upstream of both at higher α .
- − SST showed signs that the flow was unsteady at most grid levels for $\alpha \ge 3.10^{\circ}$, but SA only demonstrated signs of potential unsteadiness for the L6 grid.

Case 1b – Unsteady Simulations (URANS)

- Conducted initial time step study at α = 3.90° on the L3 grid using both SA and SST.
- For SA, a suitable time step and subiteration count combination has not been found.
- For SST, multiple time steps using 10 subiterations showed reasonable unsteady results when compared to the experimental data.

Acknowledgements

- Material presented here is a product of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) Program sponsored by the U.S. Department of Defense HPC Modernization Program Office.
- Computations done in support of this effort were done on supercomputing resources provided by the HPCMP at the Navy DoD Supercomputing Resource Center (DSRC) and by the High-End Computing Capability (HECC) at the NASA Advanced Supercomputing (NAS) Facility.

QUESTIONS?

