USM3D-ME Buffet Simulations of the ONERA OAT15A Airfoil for DPW-8/AePW-4

Tausif Jamal, Brent Pomeroy, and Seth Kelly

Configuration Aerodynamics Branch NASA Langley Research Center, Hampton, VA 23681

Introduction

- Supports DPW-8/AePW-4 Buffet Working Group
- ONERA OAT15A transonic airfoil
 - Well-studied geometry and results are compared to Jacquin, et al.
 - Buffet Working Group Test Case 1a
 - RANS, range of angles of attack (alphas) from 1.36 through 3.90 deg
 - Mach 0.73
 - Re = 3 million
- Additional statistics-based time-filtering technology is in development

- Grid partners encouraged to employ best/desired practices
- Committee-supplied mixed-element Cadence and Helden unstructured grids

Cadence Rev01

Grid Level	Approx Cell Count	Target y ⁺
L1	47,000	1.000
L2	89,000	0.670
L3	150,000	0.500
L4	235,000	0.400
L5	353,000	0.330
L6	517,000	0.290

Helden Rev01 **Grid Level** Approx Cell Count Target y⁺ 10,000 4.000 11 35,000 L2 2.000 L3 134,000 1.000 L4 528,000 0.500 0.250 L5 2,076,000 8,208,000 0.125 L6

- Grid partners encouraged to employ best/desired practices
- Committee-supplied mixed-element Cadence and Helden unstructured grids
 - Cadence Rev01, Helden Rev01, and Helden Rev02
 - Feedback from participants led to updated Helden grids
 - Simulated L1, L2, and L3 for Cadence Rev01 and Helden Rev01; only L3 for Helden Rev02

Cadence Rev01			Helden Rev01				
	Grid Level	Approx Cell Count	Target y+		Grid Level	Approx Cell Count	Target y+
	L1	47,000	1.000		L1	10,000	4.000
	L2	89,000	0.670		L2	35,000	2.000
	L3	150,000	0.500		L3	134,000	1.000
	L4	235,000	0.400		L4	528,000	0.500
	L5	353,000	0.330		L5	2,076,000	0.250
	L6	517,000	0.290		L6	8,208,000	0.125

L1-L3 Grid Images

Cadence L1

Helden Rev01 L1

Helden Rev02 L1

Helden Rev01 L2

Helden Rev02 L2

Cadence L3

Helden Rev01 L3

Helden Rev02 L3

Numerical Method

USM3D-ME (mixed element)

- Developed at NASA Langley Research Center, successor to USM3D solver
- Strong linear solver increases robustness and efficiency
- Second order in space coupled with Roe's flux-difference-splitting FDS scheme

• Setup

- RANS, local time-stepping
- First order to start simulation, then second order

Turbulence model

- SA-neg
- SA-neg-R (rotation correction)
- SA-neg-QCR2000
- Cadence: SA-neg, SA-neg-R, and SA-neg-QCR
- Helden: SA-neg

Simulations carried out using USM3D-ME

Grid Convergence (SA-neg)

Cadence

- Good grid convergence for L1-L3 at low alpha
- Moderate grid convergence for alpha above 3.10 deg

• Helden Rev01

- Solution not yet grid converged
- May need additional analysis using L4-L6
- Recall the Helden L1 and L2 are much coarser than the Cadence L1 and L2

Grid Convergence (SA-neg)

Cadence

- Good grid convergence for L1-L3 at low alpha
- Moderate grid convergence for alpha above 3.10 deg

• Helden Rev01

- Solution not yet grid converged
- May need additional analysis using L4-L6
- Helden L1 and L2 are much coarser than the Cadence L1 and L2; L3 are similar

Grid Convergence (SA-neg)

- Pressure comparison shown at alpha of 3.00 deg
- Helden Rev01 averaged over one C_L cycle
- Minimal difference in Cadence L1-L3
- Good agreement in shock location for Cadence L1-L3 and Helden Rev01 L1-L2
- Helden Rev01 L3 is different from the others
 - Weaker pressure recovery at shock
 - Upstream location of shock
- Helden Rev02 L3 shock location is furthest downstream

Simulation Convergence – Both Grid Partners

- HANIM scheme yields converged solutions for low alphas
- Plotted L3 solutions are representative of L1-L3 results
- Rapid convergence for Cadence grids
 - Approach machine zero within ~2000 iterations
 - Similar convergence at alphas of 1.36 and 1.50 deg

Helden Rev01

- Good convergence for low alpha
- Unable to achieve adequate convergence at higher alphas

Simulation Convergence – Cadence Grids

• Rapid convergence for Cadence grids (SA-neg shown)

- Approach machine zero within ~2000 iterations
- HANIM scheme yields rapid, robust convergence at wide range of alpha
- Differing rates of convergence
 - Rapid: alpha of 1.36 to 1.50 deg (fully attached flow)
 - Slow: alpha of 2.50 to 3.10 deg (approaching and reaching buffet onset)
 - Moderate: alpha of 3.25 deg and above (significant flow separation)
- Similar convergence rates for other two turbulence models

Turbulence Model Sensitivity

NASA

- L3 Cadence grid at 3.00 deg alpha (pre-buffet)
- Minimal variations in three turbulence models
 - Similar shock location and recovery
 - Inconsequential pressure recovery differences
- Similar trends at higher alpha, including post-buffet angles
- No variations in shock-induced separation

Force and Moment Comparison

• Lift curve

- Cadence grids show similar trends for L1-L3
- Helden grids do not always indicate drop in C₁ at high alpha
- Non-constant C_I-alpha slope pre-buffet (potentially surprising)

Pitching moment

- Helden Rev01 L1 and L2 show increased C_m at high alpha (consistent with high C_l)
- Cadence grids show the classic C_m breaks
- Increased Helden grid density studies may be insightful

Shock Location and Structure

Alpha 3.00 deg

- Shock oscillations observed for L1-L3 Helden grids (seen above 2.50 deg)
- Stationary shock for all Cadence grids
- Moderate shock-induced separation

Shock Location and Structure

• Alpha 3.00 deg

- Shock oscillations observed for L1-L3 Helden grids (seen above 2.50 deg)
- Stationary shock for all Cadence grids
- Moderate shock-induced separation

Alpha 3.40 deg

- Significant shock-induced separation
- Similar, yet larger, shock movement
- Stationary shock for all Cadence grids

Summary and Conclusions

NASA

- USM3D-ME simulations performed on ONERA OAT15A airfoil
- Minimal differences seen in SA-neg, SA-neg-R, and SA-neg-QCR
- Differing grid approaches yielded varying results
 - Cadence: characteristic F&M behavior; stationary shock
 - Helden: unconverged solution and shock movement may indicate unsteadiness (time-accurate solutions are needed)
- Grid resolution and growth schedule can dramatically affect results, especially between grid families

Questions?

Tausif Jamal tausif.jamal@nasa.gov Brent Pomeroy brent.w.pomeroy@nasa.gov