Correlation of Mathematical Model with AFRL RC-19 Aerothermoelastic Experiment Including an Impinging Shock

AIAA AVIATION Forum 2025

Luisa Piccolo Serafim and Earl Dowell – Duke University

Kirk Brouwer – AFRL, Wright-Patterson AFB

July 22, 2025 | Las Vegas, NV

Copyright © by L. Piccolo Serafim. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission

Motivation for this Work

- To provide the highest possible fidelity in the computational model at an affordable cost; orders of magnitude reduction in cost compared to traditional CFD/CSD methods
- To explore a wide range of relevant parameters including M_{∞} , Re, static pressure differential, thermal stresses and structural boundary conditions, both out of plane and in plane.
- To correlate computational results with experimental results and assess the sensitivity of these results to uncertainties in key parameters

Mathematical/Computational Modeling

Nonlinear Aeroelastic Solver

ROM to include unsteady aerodynamics into the aeroelastic solution

Step change in the CFD domain for each ψ_{mn} ...

 $Q_{mn}(t) = \frac{q_m(t)}{A_{mn}} + \frac{\dot{q}_m(t)}{B_{mn}} + \int_0^t \frac{q_m(\tau)}{A_{mn}} E_{mn}(t-\tau) d\tau$

Experimental Study Case: AFRL/SD RC-19 Wind Tunnel Section

Additional Considerations: In-plane boundary condition

Experimental Study Case: AFRL/SD RC-19 Wind Tunnel Section

Additional Considerations: In-plane boundary condition

Results are presented as a function of the β_{BC} , which is a <u>structural</u> parameter

Piccolo Serafim et al. JFS (2023)

DLTA with a Shock Impingement

 $\theta = 4^{\circ}$ wedge shock configuration

Aerodynamic Model: Euler (unsteady)/DLTA

(Dynamically Linearized Time-Domain Approach)

Aerodynamic Model: RANS (unsteady)/DLTA

(Dynamically Linearized Time-Domain Approach)

In-Plane boundary stiffness sensitivity $M_{\infty} = 2.0$ ΔT between panel and frame Δp between fluid and acoustic cavity

DLTA with a Shock Impingement

 $\theta = 4^{\circ}$ wedge shock configuration

Aerodynamic Model: Euler (unsteady)/DLTA

(Dynamically Linearized Time-Domain Approach)

Aerodynamic Model: RANS (unsteady)/DLTA

(Dynamically Linearized Time-Domain Approach)

In-Plane boundary stiffness sensitivity $M_{\infty} = 2.0$ ΔT between panel and frame Δp between fluid and acoustic cavity

 $\theta = 4^{\circ}$ wedge shock configuration

Wind Tunnel Setting p_c (kPa) ΔT (K)68.913.3

 $\theta = 4^{\circ}$ wedge shock configuration

Duke

0.5

-0.5

15

DLTA with a Shock Impingement

 $\theta = 4^{\circ}$ wedge shock configuration

Aerodynamic Model: Euler (unsteady)/DLTA (Dynamically Linearized Time-Domain Approach)

Aerodynamic Model: RANS (unsteady)/DLTA

(Dynamically Linearized Time-Domain Approach)

In-Plane boundary stiffness sensitivity $M_{\infty} = 2.0$ ΔT between panel and frame Δp between fluid and acoustic cavity

Inflation layer on the lower and upper (pre-wedge/wedge) walls

Shock Impingement Aerodynamic Properties

Steady Solution

Shock Impingement Aerodynamic Properties

Steady Solution

Static pressure differential

Panel stiffened by the Δp effect

Conclusion

- A range of aerodynamic models has been considered including Linear Piston Theory and Full Potential Flow for the no-shock case, and Euler and RANS/DLTA for the shock impingement case.
- For the RC-19 configuration the results are particularly sensitive to the pressure differential, thermal stress (which leads to buckling) and the in-plane as well as out of plane boundary support conditions for the plate.
- Results for flutter and LCO of the RC-19 experiment are not particularly sensitive to the aerodynamic model, with the key exception that when using the DLTA/CFD method, the steady solution for the shock location/magnitude can present indirect implications in the LCO prediction.

The computational models agree with the observations from experiments **on the essentials of the physical phenomena** e.g. buckling, flutter and limit cycle oscillations.

There is broad quantitative agreement between computations and experiments, given the sensitivity of the results to a wide range of parameters.

Correlation of Mathematical Model with AFRL RC-19 Aerothermoelastic Experiment Including an Impinging Shock

AIAA AVIATION Forum 2025

Luisa Piccolo Serafim and Earl Dowell – Duke University

Kirk Brouwer – AFRL, Wright-Patterson AFB

July 22, 2025 | Las Vegas, NV

Back-Up Slides

Experimental Study Case: AFRL/SD RC-19 Wind Tunnel Section

Additional Considerations: acoustic response

Cavity Effect

Cavity depth (d_c) exaggerated for illustration

Mean & SDT deformation

Piccolo Serafim et al. JFS (2023)

From Potential Flow to DLTA

Why we can neglect the $\int_0^t \dot{q}_m(\tau) I_{m,k}(t-\tau) d\tau$ term

$$Q_{mn}(t) = q_m(t)S_{mn} + \dot{q}_m(t)D_{mn} + \int_0^t q_m(\tau)H_{mn}(t-\tau)d\tau + \int_0^t \dot{q}_m(\tau)I_{mn}(t-\tau)d\tau$$

$$Q_{mn}(t) = q_m(t)S_{mn} + \dot{q}_m(t)D_{mn} + \int_0^t q_m(\tau) \left[H_{mn}(t-\tau) - \frac{dI_{mn}(t-\tau)}{d\tau} \right] d\tau + q_m(t)I_{mn}(0) - q_m(0)I_{mn}(t)$$

$$Q_{mn}(t) = q_m(t)S_{mn} + \dot{q}_m(t)D_{mn} + \int_0^t q_m(\tau) \left[H_{mn}(t-\tau) + \frac{dI_{mn}(t-\tau)}{dt} \right] d\tau$$
$$H_{mn}(t-\tau) \gg \frac{dI_{mn}(t-\tau)}{dt}$$

ROM to include unsteady aerodynamics into the aeroelastic solution

Knowing ...

Dynamically Linearized Time-domain Approach (DLTA) 7

Once A_{mn} , B_{mn} , and $E_{mn}(t)$ are obtained, we can reconstruct the Generalized Aerodynamic Force inside the Aeroelastic Solver for any arbitrary panel deformation ($q_m(t)$, $\dot{q}_m(t)$)

$$Q_{mn}^{CFD}(t) = \frac{q_m(t)A_{mn}}{q_m(t)} + \frac{\dot{q}_m(t)B_{mn}}{q_m(\tau)} + \int_0^t \frac{q_m(\tau)E_{mn}(t-\tau)d\tau}{q_m(\tau)} + \frac{\dot{q}_m(t)A_{mn}}{q_m(\tau)} + \frac{\dot{q}_m(\tau)B_{mn}}{q_m(\tau)} + \frac{\dot{q}_m(\tau)B_{mn}}$$

Including the Shock Wave Effect

 $p_{steady} \rightarrow$ steady pressure distribution (with the shock wave)

 $p_{CFD} \rightarrow$ unsteady pressure distribution (with the shock wave AND the step change)

Mathematical/Computational Modeling

Nonlinear Aeroelastic Solver

Shock Impingement Aerodynamic Properties

Steady Solution

Duke

Piccolo Serafim and Dowell. IFASD (2024)

Shock Impingement in Time

Unsteady pressure field implications on the $E_{mn}(t)$ matrix

Piccolo Serafim and Dowell. IFASD (2024)

Nonlinear Aeroelastic Model

Updated Equation of Motion

Standard deviation

0.5

0.5

x/a

0

0

 $\beta_{BC} = 20$

0.5

0.5

 $\beta_{BC} = 200$

 $\beta_{BC} = 50$

0.5

 $\beta_{BC} = 1000$

0.5

0.5

0

0

 $- \bullet - p_c = 63 \mathrm{kPa}, \ \overline{\Delta T} = 20 \mathrm{K}$

 $- p_c = 65 \text{kPa}, \Delta T = 15 \text{K}$

 $-p_c = 69$ kPa, $\Delta T = 20$ K

(at ¾ of the panel length)

DLTA with an Inviscid Shock Impingement

Mean deformation

Standard deviation

 $\beta_{BC} = 20$

Duke

 $\Delta T = 15 \text{ K}$

 $y^{+} = 1$

 $\beta_{BC} = 50$

Deformation in time

Standard deviation

Duke

 $\Delta T = 15 \text{ K}$

 $y^{+} = 1$

Deformation in time

Mean deformation

Duke

 $\Delta T = 15 \text{ K}$

 $y^{+} = 1$

x/a

 $\Delta T = 15 \text{ K}$ $y^+ = 1$

$\Delta T = 15 \text{ K}$

DLTA with a Viscous Shock Impingement

 $\theta = 4^{\circ}$ wedge shock configuration

Heat Equation (HE) Implementation

Different setup from the AePW RC-19 case!

 $\theta = 4^{\circ}$ wedge shock configuration

Duke

 $y^{+} = 1$

 $\theta = 4^{\circ}$ wedge shock configuration

Mean deformation

Standard deviation

Duke

 $y^{+} = 1$

Future Work

Shock-case configurations

• Investigate the unsteady aerodynamic modeling using DLTA for higher shock wedge angles, particularly for the cases where there is flow separation.

Computational/Experimental Correlation studies

- Expand the RC-19 no-shock configuration using DLTA and CFD data:
 - Most of the issues seen in this study so far with this configuration were linked to the predefined flow parameters (Δp and ΔT). Using the CFD solution to obtain these variables can bring further light to the issues seen here.