ITA and Embraer Aeroelasticity Cooperation in Preparation for the AEPW-4

Angelo A. Verri and Júlio Cesar S. Fernandes – Embraer S.A.

Flávio L. S. Bussamra and Vitor Gabriel Kleine – Instituto Tecnológico de Aeronáutica ITA

Orlando G. L. Almeida, Arthur B Gomes, Henrique S Schleetz, Bruno K. de Oliveira, Withor F. C. Menezes, Felipe B. C. de Melo – ITA / Embraer

AVIATION 2025, Las Vegas

- Presentation Objective
- Structured Collaboration
- Workshop challenges
- Introduce four methods being developed
- Conclusion

Objective

Showcase the collaborative effort between ITA (academic) and Embraer (aircraft manufacturer) on the under developing methods to address the upcoming challenges of AEPW-4 and DPW-8

3

Structured collaboration

Master degree program

There are Academic and industrial advisors

Flávio L. Silva Bussamra Academic Advisor

Advisor

Angelo Antonio Verri Industrial Advisor

Júlio Cesar S. Fernandes Industrial Advisor

Orlando Student / System Engineer

Withor Student / Materials Engineer

Henrique Student / Controls Engineer

Arthur Student / Structures Engineer

Bruno Student / Structures Engineer

Felipe Student / L&A Engineer

Our challenge on AEPW 4 – DPW 8

The workshop is intended to verify the capability of tool and methods in the prediction of Aeroelastic phenomenon and aerodynamics

(a) Pazy-wing *

(c) Pazy-CS

Fig.1 - Large deflection workgroup AEPW-4

Fig. 2 -Transonic static aeroelasticity DPW-8 - CRM***

*Website for AEPW-3: https://nescacademy.nasa.gov/workshops/AePW3/ **Website for AEPW-4: https://nescacademy.nasa.gov/workshops/AePW4/ ***Website for DPW-8: https://aiaa-dpw.larc.nasa.gov/

1 – Fast loads prediction

- An interpolation-based FSI method is proposed for Conceptual Design
- An aerodynamic database is coupled with a flexibility database
- Captures large displacements/rotations during static flight maneuvers

1 – Fast loads prediction

Pazy-wing evaluation:

Proposed: 1.7 seconds for converging each flight condition

Mid-fidelity: 5731s seconds for converging each flight condition

(Intel® Core™ i5 and 8GB memory)

Pazy-wing at 50m/s – for multiple angles of attack

- SU2 solves RANS equations in aerodynamics
- Nastran solves implicit static nonlinear structural equations
- Python scripts loosely couples the proposed framework
- Blocks whole aircraft deflection and Jig-shape obtention are under development

- Coarser meshes for CFD and Structures to test the framework
- The meshes from workshop are used for final calculations

Fig. 1 – Coarser CFD mesh and L2/Coarse workshop mesh

Fig. 2 – Coarse solid structural and DPW-7 mesh

CRM WB wing deflection in Test Case 2a [Re 5M, Mach 0.85, Cl = 0.5] DPW8 L2/Coarse mesh for CFD. Structural model from DPW-7.

CRM WB wing deflection in Test Case 2a [Re 5M, Mach 0.85, Cl = 0.5] DPW8 L2/Coarse mesh for CFD. Structural model from DPW-7.

11

- A mid-fidelity FSI obtains the flight-shape
- Structures model with aileron and DLM model are linearized in every flight-shape
- Traditional flutter solution 145 on Nastran are made for every flight-shape

Unbalanced 0.8 1 g added 2 g added 0.6 3 g added 4 g added 5 g added 0.4 Damping [%g] 6 g added 0.2 0 0.2 Y X Fig. 1. Aileron balancing with -0.4 mass in the Leading Edge -0.6 -0.8 -1 10 20 30 40 50 60 70 Speed [m/s] Fig. 1. Third bending - flutter prevention

Is the traditional mass balancing of the aileron sufficient to prevent flutter in a very/highly flexible wing?

4 – Transient NL FSI for LCO

- Couples an Unsteady Vortex Lattice Method (UVLM in the code N3L) with nonlinear transient structural analysis (Nastran NLTRAN or In-house beam code SNAKE).
- It also implements the dynamic stall model developed by Øye.
- This approach is expected to capture the Limit Cycle Oscillation (LCO) dependent on the geometric nonlinear structure associated with stall.
- The framework is called N3L-Snake.

4 – Transient NL FSI for LCO

Fig. 1. Transient NL beam model

Fig. 3. Aerodynamic model (both sides) in N3L. Runs a UVLM corrected with XFOIL.

Fig. 2. FEM solve with Nastran NLTRAN

4 – Transient NL FSI for LCO

Fig. 2 – Preliminary results N3L-SNAKE, step 0.02s

Conclusion

Structured initiatives are currently in progress by the ITA-Embraer working team in preparation for AEPW-4 and DPW-8.

- 1. Satisfactory results were obtained with fast loads prediction method, and more information is available on event DINAME 2025 (Almeida et. al 2025).
- 2. Promising results are being obtained for CRM transonic static deflection with SU2-Nastran coupling.
- 3. We are eminent to capture the effect of large deflection on aileron balancing using a matched flutter solution.
- 4. Promising results are being obtained for LCO using N3L-SNAKE framework.

Thank you !

References

- 1. <u>Avin, O., Raveh, D. E., Drachinsky, A., Ben-Shmuel, Y., and Tur, M., "Experimental aeroelastic benchmark of a very flexible wing," AIAA Journal, Vol. 60, No. 3, 2022, pp. 1745–1768.</u>
- 2. Ritter, M., Hilger, J., and others. "Collaborative PazyWing Analyses for the Third Aeroelastic PredictionWorkshop". AIAA SciTech Forum, Orlando, FL, January 2024. DOI: 10.2514/6.2024-0419
- 3. Riso, C., Cesnik, C. E., "Geometrically nonlinear effects in wing aeroelastic dynamics at large deflections". Journal of Fluids and Structures, v. 120, p. 103897, 2023. ISSN 0889-9746. Available at: https://www.sciencedirect.com/ science/article/pii/S0889974623000658.
- 4. <u>Melo, F. B. C., Bussamra, F. L. S., and Verri, A. A.. "Methodology to assess the effects of geometric nonlinearity on the static aeroelastic behavior of very flexible wings".</u> International Forum on Aeroelasticity and Structure Dynamics (IFASD), Madrid, Spain, June 2022.
- 5. <u>Melo, F.B.C., Bussamra, F.L.S. & Verri, A. A.. "Static aeroelastic rolling of a highly flexible wing: Pazy wing with aileron". Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024. DOI: 10.1007/s40430-024-05077-5</u>
- 6. Lima, J. F., Bussamra, F. L. S., Verri, A. A., and Melo, F. B. C.. "Methodology to Evaluate Flutter on Geometric Nonlinear Structural Wings Applied to the Pazy Wing". AIAA SciTech Forum, Orlando, FL, January 2024 https://doi.org/10.2514/6.2024-0830
- 7. <u>Almeida, O. G. L., Bussamra, F.L.S., Verri, A.A.. "Flexibility Matrices Accounting for Structural Geometric Nonlinearity in Wing Loads Prediction". DINAME XX International Symposium on Dynamic Problems of Mechanics, ABCM, 2025.</u>
- 8. <u>Alves, C. L. C., Bussamra, F. L. S., Verri, A. A., "Fluid-Structure Interaction Framework for Static Aeroelastic Analysis with SU2 and Nastran". ENCIT 20th Brazilian Congress of Thermal Sciences and Engineering, ABCM, 2024.</u>
- 9. MSC, "Nastran 2016 Nonlinear User's Guide SOL 400." MSC, 2016.
- Verri, A. A., Bussamra, F. L. S., Morais, K. C., Becker, G. G., Cesnik, C. E. S., Filho, G. B. L., Oliveira, L. C.. "Static Loads Evaluation in a Flexible Aircraft Using High Fidelity Fluid-Structure Iteration Tool (E2-FSI) – Extended Version." Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020. DOI: 10.1007/s40430-019-2154-4
- 11. Verri, A. A., Bussamra, F. L. S., Cesnik, C. E. S., Melo, F.B.C.. "Outcomes of Nonlinear Static Aeroelasticity for Wing Stress and Buckling". Journal of Aircraft, Vol. 62 No. 2 (2025) pp. 472-476, AIAA, 2025. DOI 10.2514/1.C037829
- 12. Filho, G. B. L., Verri, A. A., Melo, F. B. C., Bussamra, F. L. S.. "Static Aeroelastic Transonic Rolling Capability of a Modern Flexible Wing". International Forum on Aeroelasticity and Structure Dynamics, Madrid, Spain, IFASD, 2022.
- 13. Katz, J. and Plotkin, A.. "Low-Speed Aerodynamics: From Wing Theory to Panel Methods". Chaper, 12, McGraw-Hill, International Edition. 1991.
- 14. Phillips, W. F., Snyder D. O.. "Modern Adaptation of PrandItl's Lifting-Line Theory". Journal of Aircraft, vol.37, nº 4, July- August 2000.
- 15. <u>Mukherjee, R., Gopalarathnam, A., Kim S.. "Poststall Prediction of Multiple-Lifting-Surface Configuration Using a Decambering Approach". Journal of Aircraft, vol.43, nº 3, 2006</u>.
- 16. Øye, S.. "Dynamic stall simulated as time lag of separation". Proceedings of the 4th IEA Symposium on the Aerodynamics of Wind Turbines. Ro

