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Summary



Objective

➢  Showcase the collaborative effort between ITA (academic) and 

Embraer (aircraft manufacturer) on the under developing methods 

to address the upcoming challenges of AEPW-4 and DPW-8
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Our challenge on AEPW 4 – DPW 8

Fig.1 - Large deflection workgroup AEPW-4

(a) Pazy-wing * (c) Pazy-CS
Fig. 2 -Transonic static aeroelasticity DPW-8 – CRM***

The workshop is intended to verify the capability of tool and methods in the prediction of 

Aeroelastic phenomenon and aerodynamics 

(b) Swept

Pazy-wing **

*Website for AEPW-3: https://nescacademy.nasa.gov/workshops/AePW3/

**Website for AEPW-4: https://nescacademy.nasa.gov/workshops/AePW4/

***Website for DPW-8: https://aiaa-dpw.larc.nasa.gov/

https://nescacademy.nasa.gov/workshops/AePW3/
https://nescacademy.nasa.gov/workshops/AePW4/
https://aiaa-dpw.larc.nasa.gov/
https://aiaa-dpw.larc.nasa.gov/
https://aiaa-dpw.larc.nasa.gov/


1 – Fast loads prediction
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• An interpolation-based FSI method is proposed for Conceptual Design

• An aerodynamic database is coupled with a flexibility database

• Captures large displacements/rotations during static flight maneuvers



1 – Fast loads prediction
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Pazy-wing at 50m/s – for multiple angles of attack

Pazy-wing evaluation:

Proposed: 1.7 seconds for converging 

each flight condition

Mid-fidelity: 5731s seconds for 

converging each flight condition 

(Intel® Core  i5 and 8GB memory)



2 – SU2-Nastran FSI framework
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• SU2 solves RANS equations in aerodynamics

• Nastran solves implicit static nonlinear structural equations

• Python scripts loosely couples the proposed framework

• Blocks whole aircraft deflection and Jig-shape obtention are under development



2 – SU2-Nastran FSI framework
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• Coarser meshes for CFD and Structures to test the framework

• The meshes from workshop are used for final calculations

Fig. 1 – Coarser CFD mesh and 

L2/Coarse workshop mesh Fig. 2 – Coarse solid structural and DPW-7 mesh

DPW-7
7 millions

Coarser
1 millions

Coarser
3 millions

L2/Coarse
19 millions



2 – SU2-Nastran FSI framework
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DPW8 L2/Coarse mesh for CFD. Structural model from DPW-7.



2 – SU2-Nastran FSI framework
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CRM WB wing deflection in Test Case 2a [Re 5M, Mach 0.85, Cl = 0.5]

DPW8 L2/Coarse mesh for CFD. Structural model from DPW-7.
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3 – Matched Flutter on balanced aileron
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• A mid-fidelity FSI obtains the flight-shape

• Structures model with aileron and DLM model are linearized in every flight-shape

• Traditional flutter solution 145 on Nastran are made for every flight-shape



3 – Matched Flutter on balanced aileron
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3 – Matched Flutter on balanced aileron
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2. Associated with 

Aileron rotational mode
1. Regardless the 

presence of aileron 

rotational mode



3 – Matched Flutter on balanced aileron
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Fig. 1.  Aileron balancing with 

mass in the Leading Edge

Fig. 1.  Third bending - flutter prevention

Is the traditional mass balancing of the aileron sufficient 

to prevent flutter in a very/highly flexible wing?



4 – Transient NL FSI for LCO
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• Couples an Unsteady Vortex Lattice Method (UVLM in the code N3L) with nonlinear 

transient structural analysis (Nastran NLTRAN or In-house beam code SNAKE).

• It also implements the dynamic stall model developed by Øye.

• This approach is expected to capture the Limit Cycle Oscillation (LCO) dependent on the 

geometric nonlinear structure associated with stall. 

• The framework is called N3L-Snake.



4 – Transient NL FSI for LCO
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Fig. 1. Transient NL beam model

Fig. 2. FEM solve with Nastran NLTRAN

Fig. 3. Aerodynamic model (both sides) in N3L. 

Runs a UVLM corrected with XFOIL.



4 – Transient NL FSI for LCO
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43m/s

Oscillations started 

between 44 to 46m/s

Fig. 1 - Rittter et. al 2024

Fig. 2 – Preliminary results N3L-SNAKE, step 0.02s



Conclusion

Structured initiatives are currently in progress by the ITA-Embraer working team 

in preparation for AEPW-4 and DPW-8. 

1. Satisfactory results were obtained with fast loads prediction method, and 

more information is available on event DINAME 2025 (Almeida et. al 2025).

2. Promising results are being obtained for CRM transonic static deflection with 

SU2-Nastran coupling.

3. We are eminent to capture the effect of large deflection on aileron balancing 

using a matched flutter solution.

4. Promising results are being obtained for LCO using N3L-SNAKE framework.



Thank you !
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