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Presentation Objective
Structured Collaboration
Workshop challenges

Introduce four methods being developed
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Objective

» Showcase the collaborative effort between ITA (academic) and
Embraer (aircraft manufacturer) on the under developing methods

to address the upcoming challenges of AEPW-4 and DPW-8
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Our challenge on AEPW 4 — DPW 8

The workshop is intended to verify the capability of tool and methods in the prediction of
Aeroelastic phenomenon and aerodynamics
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*Website for AEPW-3: https://nescacademy.nasa.gov/workshops/AePW3/

**Website for AEPW-4: https://nescacademy.nasa.gov/workshops/AePW4/
**k¥Website for DPW-8: https://aiaa-dpw.larc.nasa.gov/
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1 — Fast loads prediction

An interpolation-based FSI method is proposed for Conceptual Design
An aerodynamic database is coupled with a flexibility database
Captures large displacements/rotations during static flight maneuvers
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1 — Fast loads prediction
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2 — SU2-Nastran FSI framework

SU2 solves RANS equations in aerodynamics

Nastran solves implicit static nonlinear structural equations

Python scripts loosely couples the proposed framework

Blocks whole aircraft deflection and Jig-shape obtention are under development
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2 — SU2-Nastran FSI| framework

* Coarser meshes for CFD and Structures to test the framework
* The meshes from workshop are used for final calculations
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Fig. 1 — Coarser CFD mesh and

9 L2/Coarse workshop mesh Fig. 2 — Coarse solid structural and DPW-7 mesh



2 — SU2-Nastran FSI framework
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2 — SU2-Nastran FSI framework
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3 — Matched Flutter on balanced aileron

« A mid-fidelity FSI obtains the flight-shape
» Structures model with aileron and DLM model are linearized in every flight-shape
« Traditional flutter solution 145 on Nastran are made for every flight-shape
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3 — Matched Flutter on balanced aileron
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3 — Matched Flutter on balanced aileron
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4 — Transient NL FSI for LCO

» Couples an Unsteady Vortex Lattice Method (UVLM in the code N3L) with nonlinear
transient structural analysis (Nastran NLTRAN or In-house beam code SNAKE).
« |t also implements the dynamic stall model developed by Qye.

« This approach is expected to capture the Limit Cycle Oscillation (LCO) dependent on the
geometric nonlinear structure associated with stall.
« The framework is called N3L-Snake.
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4 — Transient NL FSI for LCO
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Fig. 3. Aerodynamic model (both sides) in N3L.
Runs a UVLM corrected with XFOIL.
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4 — Transient NL FSI for LCO
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Conclusion

Structured initiatives are currently in progress by the ITA-Embraer working team
in preparation for AEPW-4 and DPW-8.

1. Satisfactory results were obtained with fast loads prediction method, and
more information is available on event DINAME 2025 (Almeida et. al 2025).

2. Promising results are being obtained for CRM transonic static deflection with
SU2-Nastran coupling.

3. We are eminent to capture the effect of large deflection on aileron balancing
using a matched flutter solution.

4. Promising results are being obtained for LCO using N3L-SNAKE framework.

JAIAA
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