National Transonic Facility Public Geometry Release and Summary

Brent Pomeroy

Configuration Aerodynamics Branch NASA Langley Research Center Melissa Rivers Transformational Tools and Technologies Project NASA Langley Research Center

Eric Walker

Chief Engineer for Test Operation Excellence and Research Directorate Chief Engineer Council Chair NASA Langley Research Center

Scott Brynildsen & Norma Farr

Geometry Lab Group NASA Langley Research Center Ben Rider

High Speed Aerodynamics, Flight Sciences Boeing Commercial Airplanes

Seyedeh Sheida Hosseini

Transformational Tools and Technologies Project NASA Ames Research Center

BOEING

Outline

- Facility Overview
- History
- Key CRM Tests
- CRM Coordinate Transformations
- Geometry Files

Facility Overview

- Closed circuit, pressurized, cryogenic facility
- Located at NASA Langley Research Center in Hampton, VA, USA
- Facilitates transonic, flight Reynolds number (Re) testing
 - Mach 0.1 to 1.2
 - Re 4.0 million to 145 million/foot
 1.2 million to 44 million/meter
 - Temperature -250 to 130 deg F (-157 to 54 C; 116 to 328 K)
 - Can operate with dry, ambient air or with gaseous nitrogen

Source: NASA

- 1960s Facility needs identification
- 1970-1973 Conceptual design
- 1971-1973 Risk reduction facility tests
- 1974-1978 Detailed design
- 1976 Funding appropriated
- 1979 Construction started
- 1982 Construction complete
- 1984 Open for production
- 2001 Aerospace Sciences Meeting (first open discussion of capabilities)

History and Conceptual Design

Established an international need for high Reynolds number testing

- Desired for decades before construction
- Interest from academia, industry, and government
- Detailed facility requirements study formalized in 1971
 - Matured by Department of Defense, NASA, commercial partners, and scientific advisory committees
 - Many workshops with partners and customers

Identified three ways to increase Reynolds number

- 1. Increase P_{total}
- 2. High molecular weight fluid
- 3. Reduce T_{total}

		· •
	NASA Conference I Part I	Publication 2122
	Cryogenic Tech	nnology
19960325 001	Proceedings of a conference held at Langley Research Center Hampton, Virginia November 27-29, 1979	UTION STATESCOT L red pr public rolocest tribution Unitmated
DEP/ PLASTICS ABRA	ARTHENY OF LITERART TECHNICAL LVATURDA CIRIT DCOM. DOVER, R. J. CTATI	FOR EARLY DOMESTIC DISSEMINATION Because of its significant early commercial stematic enment program, is being disseminated with the turk states in divince of general publication Thistmatemaki may be deplicated and used by the rectificient public press impairies that in the published. Relikase of the normation to other omestic parties by the rectificity of made subject to them limitations. Foreign release may be mote only with prior NASA a proval and appropriate export herizes. This legend sh
1	NASA	be marked on any reproduction of this information in who or in part. Date for general release <u>March 1982</u>
		DTIC QUALITY INSPECTED 1

Configuration Selection

Two final configurations candidates

- Short-run, high-pressure Ludwieg tube
- Continuous-run cryogenic nitrogen facility

Cryo facility selected for five key reasons

- 1. Temperature has a large effect on Reynolds number at low temperatures
- 2. High Reynolds numbers can be tested
- Reduced temperature → reduced speed of sound → decreased velocity → decreased fan power
- 4. Cryo nitrogen is similar to ambient, high-altitude flight conditions
- 5. Independent control of total pressure, total temperature and fan speed

- Two risk-reduction facilities constructed prior to NTF funding approval
- Low-speed cryogenic benchtop wind tunnel (1971)
 - 7 inch by 11 inch (18 cm by 28 cm) test section
 - Low speed (up to Mach 0.2)
 - Operated down to 80 K (-316 F, -193 C)
 - Confirmed liquid nitrogen injectors can create cryo conditions
 - Identified requisite material behavior at cryo temperatures

Langley 0.3-Meter Transonic Cryogenic Tunnel (1973)

- Small-scale version of proposed NTF
- Transonic, cryogenic
- Designed to operate for 90 days; still in operation for technology-development experiments
- Funding for NTF appropriated in 1976

Test Environment Challenges

Materials advancements needed to ensure facility and model integrity

Japan Steel material improvements

- Developed high-strength 9% Nickel maraging steel
- Stronger materials and increased maximum part size than availably domestically
- Urban legend that Japan Steel was used due to a domestic steel shortage

Samurai sword friendship gift

- Made with traditional techniques
- Offered to NASA "... in hope that this sword would serve as a symbol of the international cooperation reflected in the National Transonic Facility"
- Sword is on display in the NTF building

Source: NASA

Facility Digital Model

- Detailed digital scan of NTF circuit was taken in the mid-2010s
 - About 250 million points
 - Approximately 80% of the points are in the plenum
 - Significant work with GeoMagic used to generate CFD-ready surface geometry
- High-speed leg geometry and model support hardware has been released

Point cloud data

Tunnel circuit, high speed leg (green), and plenum (blue)

AIAA AVIATION 2025 | Las Vegas, NV

Key Common Research Model (CRM) Tests

• CRM

- Original transonic tests performed in support of Drag Prediction Workshop IV
- High-quality experimental data facilitated detailed CFD comparisons
- Tests NTF-197, NTF-215, and NTF-229

• CRM-HL

- Low-speed NTF test supplemented already-existing data sets
- Special session Wednesday morning in Academy 415 (GT-10/APA-26)
- Test NTF-237

• CRM-NLF

- Designed with Crossflow-Attenuated Natural Laminar Flow (CATNLF) method
- Temperature-sensitive paint used to visualize regions of laminar/turbulent flow
- Test NTF-228

Coordinate Transformation Overview

NASA

Different models require different transformations

- Full-span, upper-swept strut mounted vehicle
- Semispan, sidewall mounted vehicle

• Four main steps

- 1. Rig the full-scale vehicle in the tunnel at model scale
- 2. Add sidewall standoff, if necessary
- 3. Rotate mounting hardware to achieve zero-deg alpha, if necessary
- 4. Rotate vehicle and associated hardware for non-zero alpha

CRM Mounting Options

• 2.7% full-span

- Traditional CRM
- CRM-HL (planned test)
- Upper swept strut
- 5.2% semispan
 - CRM-HL (GT-10/APA-26, Wednesday morning, Academy 415)
 - CRM-NLF
- 2.7% semispan CRM-HL (planned test)
- Coordinate transformations provided in the accompanying paper
- Two example transformations on the next two slides

Full-Span 2.7% CRM Coordinate Transformations

- Equations maintained from previously-listed information for consistency
- Transformations included in how_mounted_2p7.txt in CAD release
 - 1. Scale vehicle
 - 2. Translate to model origin in the wind tunnel
 - 3. Rotate arc sector and upper-swept strut around y axis
 - 4. Rotate arc sector, upper-swept strut, and vehicle for non-zero alpha

Source: NASA

Animation depicting coordinate transformations

Semispan 5.2% CRM Coordinate Transformations

- Version 1.9 has new transformations from historically published transformations
- Transformations included in how_mounted_5p2semispan.txt in the CAD release
 - 1. Translate and scale to wind tunnel model origin
 - 2. Add a standoff between the model and the wall
 - 3. Rotate vehicle for non-zero alpha

Source: NASA

AIAA AVIATION 2025 | Las Vegas, NV

Animation depicting coordinate transformations

Semispan 2.7% CRM Coordinate Transformations

- Version 1.9 has transformations not previously published
- Transformations included in how_mounted_2p7semispan.txt in the CAD release
 - 1. Translate and scale to wind tunnel model origin
 - 2. Add a standoff between the model and the wall
 - 3. Rotate vehicle for non-zero alpha

Animation depicting coordinate transformations

High-Speed Leg and Plenum

Geometry Download

- Posted to the new DPW website (https://www.aiaa-dpw.org/ntf.html)
- Note the new domain
- Current version: v1.9 (June, 2025)
- Contains
 - -12 files
 - .igs, .stp, and .x_t
 - All in inches

- NTF_Additional_Obstructions_2023_10_02.igs
 NTF_Arc_Sector_CameraBod_2023_10_02.igs
 NTF_Arc_Sector_Rotational_Axis_Cylinder_2023_10_02.igs
 NTF_Arc_Sector_Straight_Sting_Odeg_2023_10_02.igs
 NTF_Ontraction_TestSection_Diffusor_2023_10_02.igs
 NTF_Diffusor_2023_10_02.igs
 NTF_Diffusor_Constant_Cross_Section_Extension_2023_10_02.igs
- NTF_Inlet_Contraction_2023_10_02.igs
 NTF_TestSection_Baseline_in_Plenum_2023_10_02.igs
- NTF_USS_Sting_noRotation_2025_04_21.igs
 NTF_arc_sector_aft_fixed.igs
 NTF_arc_sector_fwd_rotational_0deg.igs

Change Log

A high level overview of version increments is shown here. More details can be found in the README files in the zip file

Version 1.7	April 28, 2025	A small clamshell part was previously missing from the X_T and IGES versions of NTF_USS_Sting_noRotation_2024_08_15, added; also added CRM coordinate transformations
Version 1.6	October 11, 2024	Replaced NTF_Arc_Sector_wStingHub_Sym_0deg_2023_10_02 with 2 new parts: NTF_arc_sector_aft_fixed and NTF_arc_sector_fwd_rotational_0deg
Version 1.5	August 26, 2024	Improved upper-swept strut modeling (replaced NTF_Arc_Sector_TopLoadingSting_0deg_2023_10_02 with NTF_USS_Sting_noRotation_2024_08_15
Version 1.4	October 4, 2023	Created a combined NTF_Contraction_TestSection_Diffusor_2023_10_02 part

NASA Official Responsible for Content

Brent W. Pomeroy Last Updated

April 29, 2025

Geometry Overview

Geometry Files (1/2)

Geometry Files (2/2)

DPW-8/AePW-4 Usage

- Test case for Test Environments Working Group
- Consistent shift of CFD results relative to experimental data
- Multiple items may cause the differences
 - Wall effects?
 - Tare and interference?
 - Physical geometry differences?
 - Freestream (i.e., inlet) conditions?
- Complex geometry will require meticulous preparation and careful gridding

Conclusions

- NTF has a storied history of tests, including three CRM configurations
- Detailed digitization of NTF circuit
- Publicly available high-speed leg CAD has been released (v1.9) at https://www.aiaa-dpw.org/ntf.html
- Test case of interest for DPW-8/AePW-4 Test Environment Working Group

Special Thanks

NASA

- Chris Rumsey
- Miranda Ertsgaard
- Courtney Winski
- Andy Kwok

Brent Pomeroy brent.w.pomeroy@nasa.gov dpwaiaa@gmail.com

AIAA AVIATION 2025 | Las Vegas, NV