DPW-8/AePW-4 Scatter Working Group:

An Overview of Mini Workshops 1 and 2

AIAA Aviation 2025 July 21

https://www.aiaa-dpw.org

Source of Scatter – Motivation

- Seek to identify deviations in DPW-7 CRM data
- Significant spread in solvers post pitchup (all submissions plotted)

Image source:

Tinoco, E., et al., "Summary Data from the Seventh AIAA CFD Drag Prediction Workshop," AIAA 2023-3492

Sources of Scatter – Overview

• Three test cases examined so far

- Test Case 1a: ONERA OAT15A
 - Establish initial level of scatter
- Test Case 1b: Joukowksi Airfoil
 - Order of accuracy check
- Test Case 1c: ONERA OAT15A
 - Reduced scatter

Future test case

- Test Case 2: CRM Wing/Body Cruise
 - Examine scatter for 3D and QCR2000

Sustained meeting cadence and structure

- Approx 20 people on distribution list
- Average 10 attendees in each meeting
- Meeting Tuesdays 10am ET on 2nd and 4th week of the month

Test Case 1a: Workshop-Wide Validation

- Validation of steady CFD analysis, required
- Users are encouraged to employ best practices
- Settings
 - Steady CFD (e.g., RANS)
 - Prefer some version of SA, multiple turbulence models can be submitted
 - Purely 2D simulations (one cell wide)
- Grids
 - Six-member RANS grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable
 - Committee-supplied grid is one cell wide with a 230mm chord (same as experiment) and follows RANS best practices

Conditions

- Mach 0.73, Re_c =3m (based on chord length), T_{static} = 271 K (487.8 R)
- Alpha: 1.36, 1.50, 2.50, 3.00, 3.10

ONERA OAT15A C_L **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_D **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_M **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_p and C_f : $\alpha = 1.5^{\circ}$

Test Case 1b: Joukowski Airfoil

- Validation of steady CFD analysis, required
 - https://github.com/Drag-Prediction-Workshop/DPW8-Scatter/blob/main/TestCase1b/Joukowski.pdf

Settings

- Steady CFD RANS French Vanilla SA-[neg] (All terms!)
 - Adiabatic Wall (not isothermal)
 - Characteristic Farfield (100 chords away no circulation)
 - Use periodic boundary conditions for sidewall boundary conditions
- Converge residuals to machine precision (~1e-10)

• Grids

- Committee-supplied grid family (High-Fidelity CFD Verification Workshop 2024)
- Conditions Re_c Farfield $\chi = \widetilde{\nu} / \nu$ Mach T_{static} Pr **Pr**₊ α 0.15 6×10^{6} 520.0 R 0.0° 1.4 0.72 0.9 3 Sutherland's Law

Test Case 1b: Joukowski Airfoil Mesh

- Cusped trailing edge remove inviscid singularity
- Zero angle of attack stagnation point at leading edge
- Custom mesh to observe order of accuracy (Joukowski conformal mapping)

Joukowski C_D Convergence

Joukowski Airfoil – Order of Accuracy

Adiabatic Wall (not isothermal) Characteristic Farfield (1000 chords away)

- Use periodic boundary conditions for sidewall boundary conditions
- Converge residuals to machine precision (~1e-10)

• Grids

Settings

- Six-member grid family; four are required, six are desirable
- Encourage use of committee-supplied grids; user-generated grids are acceptable
 - Cadence Structured/Unstructured, Helden Mesh Unstructured

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Test Case 1c: ONERA OAT15A Airfoil

- Steady CFD RANS French Vanilla SA-[neg] (All terms!)

• Verification of steady CFD analysis, required Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

ONERA OAT15A C_D **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_D Participant Improvements

ONERA OAT15A C_D **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_L **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_M **Convergence:** $\alpha = 1.5^{\circ}$

ONERA OAT15A C_p and $C_f \alpha = 1.5^{\circ}$

ONERA OAT15A C_p and $C_f \alpha = 1.5^{\circ}$ (Shock)

Test Case 2a: Wing/Body Cruise

- Verification of steady CFD analysis, required
- Settings
 - Steady CFD RANS French Vanilla SA-[neg] vs QCR2000 (All terms!)
 - Adiabatic Wall (not isothermal)
 - Converge residuals to machine precision ($\sim 1e-10$)
- Grids: <u>https://www.aiaa-dpw.org/DPW8/Scatter/Test_Case_2</u>
 - NASA CRM geometry including deformed wing matching condition
 - (L1:Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)
 - Six-member grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable
 - Sref (semi-span grid) Cref **Moment Center** Semispan **Reference Units** 297360.0 sq.in 278.5 in 1156.75 in (1325.90, 0.00, 177.95)**Pr**_t **Farfield** $\chi = \tilde{\nu}/\nu$ Rec Mach T_{static} (120° F) Pr а. Conditions 0.85 5×10^{6} 2.50° 579.67 R | 322.04 K 1.4 0.72 0.90 3 Sutherland's Law $\mu(T) = \mu_0 \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right) \begin{array}{l} \mu_0 = 1.716 \times 10^{-5} \frac{\text{kg}}{m s} \\ T_0 = 491.6^{\circ} R \quad S = 198.6^{\circ} R \quad \frac{\mu(T)}{\mu_{ref}} = \left(\frac{T}{T_{ref}}\right)^{3/2} \left(\frac{1 + S/T_{fef}}{T/T_{fef} + S/T_{fef}}\right) \end{array}$

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Comparison Data

NTF197: r44,r51,r53 NTF215: r43,r103 NTF229: r296,r300,r302 Ames216: r35,r126,r130,r133

Conclusion

Test Case 1a: ONERA OAT15A

- Surprisingly large scatter!

Test Case 1b: Joukowski

- Excellent agreement between participants
- Clear demonstration of 2nd-order accuracy (and higher!)

Test Case 1c: ONERA OAT15A

- Reduction in scatter!
 - Consistent Turbulence Model
 - Consistent problem definition (nothing left to participants)
 - Fairfield Distance
 - Residual Convergence
- Test Case 2a: Wing/Body Cruise
 - SA-[neg] vs SA-[neg]-QCR2000
- Want to Participate?
 - Contact galbramc@mit.edu or Ben.J.Rider2@boeing.com

SHAPING THE FUTURE OF AEROSPACE

dpwaiaa@gmail.com

ONERA OAT15A C_p and $C_f \alpha = 1.5^{\circ}$ (Leading Edgeodalaa

ONERA OAT15A C_p and $C_f \alpha = 1.5^{\circ}$ (Trailing Edge) $\partial A A A$

Test Case 1d: ONERA OAT15A Airfoil

- Verification of steady CFD analysis, required
- Settings
 - Steady CFD RANS French Vanilla SA-[neg] + QCR2000
 - Adiabatic Wall (not isothermal)
 - Characteristic Farfield (1000 chords away)
 - Use periodic boundary conditions for sidewall boundary conditions
 - Converge residuals to machine precision (~1e-10)
- Grids
 - Six-member grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable

• Conditions Mach Re_c T_{static} α γ Pr Pr_t Farfield $\chi = \tilde{\nu}/\nu$ 0.73 3×10^6 271 K (487.8 R) 1.5° 1.4 0.72 0.9 3

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

Test Case 2b: Wing/Body Cruise

- Verification of steady CFD analysis, required
- Settings
 - Steady CFD RANS French Vanilla SA-[neg] + QCR2000 (All terms!)
 - Adiabatic Wall (not isothermal)
 - Converge residuals to machine precision (~1e-10)
- Grids: <u>https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2</u>
 - NASA CRM geometry including deformed wing matching condition
 - (L1:<u>T</u>iny/L2:<u>C</u>oarse/L3:<u>M</u>edium/L4:<u>F</u>ine/L5:e<u>X</u>tra-fine/L6:<u>U</u>ltra-fine)
 - Six-member grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable
 - Sref (semi-span grid) Cref **Moment Center** Semispan **Reference Units** 297360.0 sq.in 278.5 in 1156.75 in (1325.90, 0.00, 177.95) \Pr_{t} | Farfield $\chi = \widetilde{\nu}/\nu$ Rec Mach T_{static} (120° F) Pr а. Conditions 0.85 5×10^{6} 2.50° 579.67 R | 322.04 K 1.4 0.72 0.90 3 Sutherland's Law $\mu(T) = \mu_0 \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right) \begin{array}{l} \mu_0 = 1.716 \times 10^{-5} \frac{\text{kg}}{m s} \\ T_0 = 491.6^{\circ} R \quad S = 198.6^{\circ} R \quad \frac{\mu(T)}{\mu_{ref}} = \left(\frac{T}{T_{ref}}\right)^{3/2} \left(\frac{1 + S/T_{fef}}{T/T_{fef} + S/T_{fef}}\right) \end{array}$

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Comparison Data

NTF197: r44,r51,r53 NTF215: r43,r103 NTF229: r296,r300,r302 Ames216: r35,r126,r130,r133

Test Case 2c: Wing/Body Cruise

- Far Field Sensitivity Study: Steady CFD analysis
- Settings
 - Steady CFD RANS French Vanilla SA-[neg] + QCR2000 (All terms!)
 - Adiabatic Wall (not isothermal)
 - Converge residuals to machine precision (~1e-10)
- Grids: <u>https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2</u>
 - NASA CRM geometry including deformed wing matching condition
 - (L1:<u>T</u>iny/L2:<u>C</u>oarse/L3:<u>M</u>edium/L4:<u>F</u>ine/L5:e<u>X</u>tra-fine/L6:<u>U</u>ltra-fine)
 - Six-member grid family; four are required, six are desirable
 - Encourage use of committee-supplied grids; user-generated grids are acceptable

Sref (semi-span grid) Cref **Moment Center** Semispan **Reference Units** 297360.0 sq.in 278.5 in 1156.75 in (1325.90, 0.00, 177.95) \Pr_{t} | Farfield $\chi = \widetilde{\nu}/\nu$ Re Mach T_{static} (120° F) Pr α Conditions 0.85 5×10^{6} 2.50° 579.67 R | 322.04 K 1.4 0.72 0.90 3 Sutherland's Law $\mu(T) = \mu_0 \left(\frac{T}{T_0}\right)^{3/2} \left(\frac{T_0 + S}{T + S}\right) \begin{array}{l} \mu_0 = 1.716 \times 10^{-5} \frac{\text{kg}}{m s} \\ T_0 = 491.6^{\circ} R \quad S = 198.6^{\circ} R \quad \frac{\mu(T)}{\mu_{ref}} = \left(\frac{T}{T_{ref}}\right)^{3/2} \left(\frac{1 + S/T_{fef}}{T/T_{fef} + S/T_{fef}}\right) \end{array}$

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Comparison Data

NTF197: r44,r51,r53 NTF215: r43,r103 NTF229: r296,r300,r302 Ames216: r35,r126,r130,r133

Test Case 3a: Wing/Body Polar

CRM Wing/Body Reynolds number: 5M (LoQ) Dynamic Pressure: Q_∞ =1384 psf Mach number: 0.85(M_{cruise}) Angles of attack: 2.50, 3.00, 3.25, 3.50, 4.00, 4.25

- Temperature: 120.0 F (579.67 R / 322.04 K)
- Reference Information: <u>https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html</u>

Committee-supplied

- NASA CRM geometry including deformed wing matching condition
 - Trip location Wing: 10% chord upper/lower surface
- Grid Family (L1:<u>T</u>iny/L2:<u>C</u>oarse/L3:<u>M</u>edium/L4:<u>F</u>ine/L5:e<u>X</u>tra-fine/L6:<u>U</u>ltra-fine)

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation

- Sectional C_P distribution
- Residuals (Flow & Structural Solver)

Comparison Data

NTF197: r44,r51,r53 NTF197: r92,r97,r99 *(WBT0)* NTF215: r43,r103 NTF229: r296,r300,r302 Ames216: r35,r126,r130,r133

Test Case 3b: Wing/Body Polar (R=20M)

• CRM Wing/Body

- Reynolds number: 20M (HiQ)
- Dynamic Pressure: $Q_{\infty} = ?$
- Mach number: 0.85(M_{cruise})
- Angles of attack: -1.50, 0.00, 1.50, <u>2.75</u>, 3.10, <u>3.50</u>, 4.00, 4.50
- Temperature: ? F (? R / ? K)
- Reference Information: <u>https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html</u>

Grid: Level 3

Grid: Level 1-6

Committee-supplied

- NASA CRM geometry including deformed wing matching condition
 - Trip location Wing: 10% chord upper/lower surface
- Grid Family (L1:<u>T</u>iny/L2:<u>C</u>oarse/L3:<u>M</u>edium/L4:<u>F</u>ine/L5:e<u>X</u>tra-fine/L6:<u>U</u>ltra-fine)

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation

- Sectional C_P distribution
- Residuals (Flow & Structural Solver)

Comparison Data NTF197: r?,r? NTF197: r?,r? (WBTO) NTF215: r? NTF229: r? ETW ESWIRP: r?

DPW-8/AePW-4 Mini Workshop 2 | Aviation 2025 | Scatter Reduction WG

Test Case 3c: Wing/Body Mach Sweep

CRM Wing/Body

- Reynolds number: 5M (LoQ)
- Dynamic Pressure: Q_∞ =?,?,?,1384, ? psf
- Mach numbers: 0.70, 0.80, 0.82, 0.85, 0.87
- Angle of attack: 2.75
- Temperature: ?, ?,?,120.0,? F (579.67 R / 322.04 K)
- Reference Information: <u>https://aiaa-dpw.larc.nasa.gov/Workshop7/DPW7-geom.html</u>

Grid: Level 1-6

Committee-supplied

- NASA CRM geometry including deformed wing matching condition
 - Trip location Wing: 10% chord upper/lower surface
- Grid Family (L1:<u>T</u>iny/L2:<u>C</u>oarse/L3:<u>M</u>edium/L4:<u>F</u>ine/L5:e<u>X</u>tra-fine/L6:<u>U</u>ltra-fine)

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation

- Sectional C_P distribution
- Residuals (Flow & Structural Solver)

Comparison Data NTF197: r?,r? NTF197: r?,r? *(WBT0)* NTF215: r? NTF229: r? ETW ESWIRP: r? Ames216: r?

Scatter Reduction Working Group Leadership

- Marshall Galbraith, Massachusetts Institute of Technology
- Kevin Holst, University of Tennessee, Knoxville
- Ben Rider, The Boeing Company

Geometry/Grid Far Field Details

<u>NASA CRM (Full Scale)</u> MAC = 275.8" Semispan = 1156.75"

	DPW7: iges files (box) X (inch) Y (inch) Z (inch)	Min -22440.9, 0.0 -23405.5	Max 23838.6 35433.1 23838.6	+/- Range 23139.75 35433.1 23838.6	Range / MAC ~ 84.0 ~ 128.6 ~ 86.5	Range / Semispan ~ 20.0 ~ 30.6 ~ 20.6	https://aiaa-dpw.larc.nasa.gov/Workshop7/Geometry/2021- 03-02_Version_01/DPW7geometries.zip
	DPW8: HeldenMesh (box) X (inch) Y (inch) Z (inch)	Min -551 60.0 0.0 -551 60.0	Max 551 60.0 551 60.0 551 60.0	+/- Range 551 60.0 551 60.0 551 60.0	Range / MAC 200.0 200.0 200.0	Range / Semispan ~ 47.7 ~ 47.7 ~ 47.7	<u>https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/</u> Helden_Grids.REV00/
DFVVO	DPW8: Cadence (box) X (inch) Y (inch) Z (inch)	Min -115582.5 0.0 -115584.0	Max 118237.9 116834.7 116018.1	+/- Range 116910.2 116834.7 115801.1	Range / MAC ~ 424.2 ~ 423.9 ~ 420.2	Range / Semispan ~ 101.1 ~ 101.0 ~ 100.1	<u>https://dpw.larc.nasa.gov/DPW8/Scatter/Test_Case_2/</u> Cadence_Grids.REV00/
	DPW7: Vassberg (sphere) X (inch) Y (inch) Z (inch)	Min -30328.203 0.0 -31449.638	Max 32996.560 31664.519 31865.992	+/- Range 31662.382 31664.519 31657.815	Range / MAC ~ 114.8 ~ 114.8 ~ 114.8	Range / Semispan ~ 27.4 ~ 27.4 ~ 27.4 ~ 27.4	https://dpw.larc.nasa.gov/DPW7/Vassberg_Grids.REV00/
	DPW7: JAXA (sphere) X (MAC) Y (MAC) Z (MAC)	Min -413.890 0.0 -418.675	Max 424.690 419.349 420.005	+/- Range 419.290 419.349 419.340	Range / MAC ~ 419.3 ~ 419.3 ~ 419.3	Range / Semispan ~ 100 ~ 100 ~ 100	https://dpw.larc.nasa.gov/DPW7/JAXA_Grids.REV00/
DPW7-	<u>DPW7: NLR (sphere)</u> X (m) Y (m) Z (m)	Min -2949.98 0.0 -2995.1	Max 3050.00 3000.00 3004.99	+/- Range 2999.99 3000.00 3000.05	Range / MAC ~ 428.2 ~ 428.2 ~ 428.2	Range / Semispan ~ 102.1 ~ 102.1 ~ 102.1 ~ 102.1	<u>https://dpw.larc.nasa.gov/DPW7/NLR_Grids.REV00/</u> <u>DPW7-NLR-grids/</u>
	<u>DPW7: DLR (box)</u> X (m) Y (m) Z (m)	Min -570.0 0.0 -594.5	Max 630.0 900.0 605.5	+/- Range 1200.0 900.0 1200.0	Range / MAC ~ 171.3 ~ 128.5 ~ 171.3	Range / Semispan ~ 40.9 ~ 30.6 ~ 40.9	https://dpw.larc.nasa.gov/DPW7/DLR_Grids.REV00/
	DPW7: GGNS (box) X (inch) Y (inch) Z (inch)	Min -22400.0 0.0 -22400.0	Max 22400.0 22400.0 22400.0	+/- Range 22400.0 22400.0 22400.0	Range / MAC ~ 81.2 ~ 81.2 ~ 81.2	Range / Semispan ~19.4 ~19.4 ~19.4	Adapted grids (not publicly released)