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Outline

« Kestrel Overview and Compute Environment
« Grids and Computational Methodology

 Selected Cases

— Case l1a: Grid Convergence Study

— Case 2a: Alpha Sweep

— Case 3:  Reynolds Number Sweep

— Case 4:  RANS Grid Adaptation

— Case 5:  Beyond RANS (DDES with Grid Adaptation)
— Extra credit interspersed throughout various Cases

« Conclusions




Kestrel CFD Solver

* High-fidelity code from Department of Defense CREATE-AV

— Multidisciplinary tool that couples aerodynamics, S&C,
thermochemistry, and propulsion

— Cell centered

— Includes RANS, URANS, and DDES schemes

— Alpha-seeking for local time stepping

— Alpha and C, seeking for global time stepping

* Inner/outer dual-mesh approach

— Static inner unstructured grid
— Static or adaptive offbody Cartesian grid
— Unstructured grid trimmed at constant distance

 Executed with Kestrel 12.1 SDK

Outer Cartesian Grid Inner Unstructured Grid




Supercomputing Environment

- Executed on NASA Advanced Supercomputing (NAS) facility
— Comprised of four different supercomputers (Pleiades, Electra, Aitken, and
Endeavour)
— More than 11,000 nodes and 241,000 compute cores
— Contains both Intel and AMD chips; TOSS3 (Linux 3) operating system

* Resource usage for DPW-VII
— Intel Skylake nodes on Electra (a few select
jobs on Haswell)

— Between 1,600 and 3,200 processors
— Walltime from a few hours to days

* Total of 216 simulations

— Well in excess of 30 requested jobs for Cases
1a, 20, 3, 4, and 5

— Large number of runs due to significant
additional investigation and alpha-searching




Grid Overview (1/2)

« Committee-supplied JAXA unstructured grids

» Variety of aeroelastic deformations

- Six different grid densities
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Grid Overview (2/2)

* Mixed element surface and volume grid
- Surface grid made of quadrilaterals and triangles

* Volume grid included tetrahedron, pyramids, prisms, and hexahedron

S Surface

Red: quadrilaterals
and triangles

Volume
B Gray: tetrahedron

Green: prisms
Brown: hexahedron




Solution Setup

« Computational approach
— HLLE++ inviscid flux and LDD+ viscous flux
— Second-order spatial and temporal accuracy

— Temporal damping applied to inner and outer grid
— Fully-turbulent SARC-QCR (QCR2000)

- KCFD (inner solver) and SAMAIr (outer solver)

- Executed all RANS cases to 20,000 iterations,
regardless of convergence behavior

- Appreciation extended to the Committee
for accelerating development of the
reduction scripts and data file format




Case 1a: Unstructured Grid Convergence

. Simulations executed on all six densities Mach 0.85
Re = 20 million
- Data averaged over last 2,000 iterations C_=0.58

— From user’s best practices; may need more analysis
— More stable grid convergence for coarser grids
— Variations in C; consistent with typical Kestrel results
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Case 1a: Unstructured Grid Convergence

 Simulations executed on all six densities

- Data averaged over last 2,000 iterations

— From user’s best practices; may need more analysis
— More stable grid convergence for coarser grids
— Variations in C; consistent with typical Kestrel results

- Excellent grid convergence with increasing density
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Case 1a: Inboard Pressure Cuts
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separation region 0.8

— Grid density has a large effect on
the junction flow

Moderate deviations near the
leading edge lower surface
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Case 1a: Midspan and Outboard Pressure Cuts

- Few differences seen in shock strength or location for the midspan and
outboard locations (Cuts 9 and 12 representative of all results)

* Minimal variations seen in trailing edge behavior (Cut 12 is representative)
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Case 1a: Overset Computational Domain

* Inner-most Cartesian cell size of outer
unstructured cell (best practice)

« Quter box extends ~110 ¢, in all directions

« Cartesian growth rate auvtomatically
determined
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Case 1a: Trim Distance Study

* Nearbody grids tfrimmed using carp

— Kestrel's grid manipulation package Trim Distance A SN

— Supports numerous grid formats 0.02 ey O L3
(including ugrid) 0.03
— Inner grid trimmed at a range of 0.04
distances 0.05
- Simulations were executed at 883

constant a (2.758 deg.) with minimal 0.08

difference in drag or convergence 0.09
0.10

0.15

Selected trim
distance (0.06)
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Case 1a: Trimmed Grid Visualization

 Selected 0.06

» Close trim distance can lead to erroneous results and solution instability

 Largely isotropic cell spacing at selected distance

* Trim distance held constant for subsequent solutions

| —

|
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Case 1a: Aerodynamic Performance

- Alpha sweep executed on tiny and medium/trimmed (baseline) grids
— Sweep from a of 0 to 8 deg. shown every 0.25 deg. (total of 86 jobs)
— Tiny grid yields decreased a;.n,, ANd deeper C,, bucket (not shown)

- Difference in inboard flow separation ~0.50 deg.

- Deviations observed in deep stall region
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Case 1a: Aerodynamic Performance

- Alpha sweep executed on tiny and medium/trimmed (baseline) grids
— Sweep from a of 0 to 8 deg. shown every 0.25 deg. (total of 86 jobs)
— Tiny grid yields decreased a;.n,, ANd deeper C,, bucket (not shown]

8 I
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Case 1a: Computational Cost

» Total cost for medium-density mesh

— Fully unstructured grid
— Trimmed grid at 0.06

1600 CPUs (40 Skylake nodes)

About 10.5 hours total for overset formulation

Cost per iteration is primarily between
2 and 4 sec. (without refinement)

Overset solution yields ~50% reduction in
compuvutational cost relative to unsiructured
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Case 1a: Medium Trimmed Grid Alpha Sweep

- Pitch break at ~3.0 deg. (C, ~0.62)

- Inboard wing separation at ~7.25 deg.

-0.15
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Case 2a: Polar

- Executed with medium grid and appropriate aeroelastic deformations
 Increasing flow separation observed for a > ~3.0 deg.
- Progressive decambering leads to monotonically-decreasing C,, slope

- Pitching moment break observed near C, ~0.62
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Case 2a: Inboard Surface Cuts

 Increasing angle of attack yields a
downstream shift in shock location

- Shock clearly evidenced by C; and C;

* Flow nominally attached downstream | A
of the shock
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Case 2a: Mid-Span Surface Cuts

- Downstream shift in shock observed with larger
angles of attack (expected)

 No double shocking at high angles

- Flow separates at shock location and
fails to reattach above a = 3.25 deg.
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Case 3: Reynolds Number Sweep
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Case 4: RANS Adaptive Mesh

- Adaptive mesh refinement performed in offbody Cartesian grid

— Nearbody-grid adaptation not yet available
— User-specified region limits shown in blue box
— Amount of refinement based upon a threshold value
— Separated wake led to decision to refine based on

* Refinement applied every 250 iterations

« Adaptation used over the
entire simulation (not frozen)

« Grid density must be traded with
compuvutational cost

e
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Case 4: Effect of Refinement Threshold (1/3)

« Threshold value conirols degree of grid refinement based on values of @

— Decreased threshold yields increased grid density

— Cases run at threshold values from 40 through 200 (12 jobs total)
— Executed for 6,000 iteratfions — sufficient to understand grid resolution
— Cartesian grid convergence observed after 5,000 iterations

« Analysis performed at a = 2.75 deg. (plotted) and 4.25 deg.
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Case 4: Effect of Refinement Threshold (2/3)

- Selection of threshold significantly affects wake refinement

« Chose threshold value of 60 with ~280 miillion cells in Cartesian region

— Minimal grid changes at a = 2.75 deg.
— Adequately captures wing tip vortex, mid-span separation, and fuselage vortex
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Case 4: Effect of Refinement Threshold (3/3)

- Range of thresholds analyzed at C; of 0.58

 Threshold value has minimal effect on F&M at this condition

— Consistent with expected results
— Improved resolution of the wake and the shock

 This observation does not mean that refinement has no effect on the global
F&M (covered in next slides)
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Case 4: Aerodynamic Performance

- Adapted grid yields only a slight reduction in lift and moment magnitude
 Pitch-up break point extremely similar for both formulations

« Observations consistent with typical Kestrel behavior
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Case 4: Convergence History

- Similar convergence history
across full range

- Differences in averaged values

— Grid-adapted solutions yield
decreased drag

— C, ~0.001

— Maximum C, delta ~3 counts
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Case 4: Pressure Cuts (C, 0.58)

- Overall, minimal changes observed in surface C; data

- Slight forward movement of shock at outboard locations

Static n=0.3430 Static 11=0.8456
Adapt n=0.3430 Adapt n=0.8456
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Case 5: Beyond RANS (DDES Adaptive Mesh)

 Similar setup to RANS cases

— Same refinement region and settings
— SARC-QCR turbulence model

- Averaging window

— Simulation run for 26,000 iterations (not 20,000)
— Began averaging at 20,000 iterations
— Averaged for 6,000 iterations (not 2,000)

- Nondimensional fime step set to 0.010, dimensional time step falls out

Voo X dt _ g
Cref
dt* x Cref
dt =
Vo
4 0:010 1.0
-~ 7239.725

dt = 0.000001381
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Case 5: Beyond RANS (DDES Adaptive Mesh)

e
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Case 5: Opportunities for Investigation

- A more thorough investigation is warranted

 Grid considerations

— Appropriateness of current grids for DDES need to be investigated
— Possibility of modeled stress depletion should be analyzed

- Computational settings

— Temporal domping may need to be considered
— Examine impact of RC and QCR
— Smaller time steps might be significant
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Summary

Analysis performed on Cases 1q, 2a, 3,4, and 5
Excellent unstructured grid convergence achieved
Pitch break observed C, ~0.62

Offbody adaptive mesh refinement improved wake prediction, but minimal
effect on integrated F&M

Unsteady DDES yielded earlier separation than RANS
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Questions?
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