7th AIAA Drag Prediction Workshop Metacomp Technologies, Inc.

METACOMP TECHNOLOGIES

J Neta

HIE

P11++

Overview

HHIE

- Solver, settings & models
- ✓ Case 1a: Grid Convergence Study
- ✓ Case 2a: Alpha Sweep (Re=20M)
- ✓ Case 3: Re sweep (C_L =0.50)
- ✓ Case 6: Coupled aero-structural
- Summary

Solver & Settings

- CFD++ Version 20.1
- Bounded nodal-reconstruction transport
- HLLC Riemann solver
- Self-tuning far-field absorbing layers
- Implicit solver with algebraic multi-grid acceleration
- C_L-driver option (for imposed C_L cases)
- SARC+QCR2013 and SST models

Case 1a: Grid Convergence Study

- 6 Simulations performed one with each grid from the JAXA hybrid mesh family: tiny, coarse, medium, fine, extra fine and ultra fine
- CFD++'s C_L-driver used to automatically adjust the angle-of-attack to achieve desired $C_L = 0.58 (\pm 0.0001)$

JAXA hybrid mesh family with tetrahedrals, pyramids, prisms, and hexahedrals

METACOMP TECHNOLOGIES

Grid Level	# Cells		
Tiny	25,294,690		
Coarse	76,058,884		
Medium	164,065,758		
Fine	295,240,476		
Extra fine	476,358,610		
Ultra fine	739,171,907		

Grids

J Meta

HIVI++

Sample Residual Convergence

ISI (PAA++

J Meta

C_L History

++

α History

/ Neta

+++

α History (Zoomed-in)

METACOMP TECHNOLOGIES J Meta

HIL

++

Grid Convergence

S PLA++

/ Neta

α=2.75°CI =0.580000 SARC-QCR

α=2.75°CI =0.580000 SARC-QCR

Flow conditions: Mach 0.85, Re=20M, T_{total}= -250°F
CFD++ Compressible RANS (Air, Perfect Gas)

α	Mesh		
2.23° (C _L =0.50)	2.50° LoQ JAXA Medium		
2.75 °	2.75° LoQ JAXA Medium		
3.00°	3.00° LoQ JAXA Medium		
3.25°	3.25° LoQ JAXA Medium		
3.50°	3.50° LoQ JAXA Medium		
3.75°	3.75° LoQ JAXA Medium		
4.00 °	4.00° LoQ JAXA Medium		
4.25 °	4.25° LoQ JAXA Medium		

Residuals: $\alpha = 2.50^{\circ}$ (C_L-driver active)

METACOMP TECHNOLOGIES / Neta

PM++

Alpha-Sweep Residuals: SARC+QCR, Re=4M

METACOMP

TECHNOLOGIES

MetaFSI CAA++

Alpha-Sweep Residuals: SST, Re=4M

ISI PAA++

Cross-Section Mach Contours and Separation Re=4M Isosurface Comparisons

α=4.00°: SARC-QCR (Left) and SST/Start Soln nt=8900 (Right)

Aircraft surface: Pressure Isosurface: -1 m/s x-velocity component Cutplane: Mach number

Cross-Section Mach Contours and Separation Re=4M Isosurface Comparisons

α=4.00°: SARC-QCR (Left) and SST/Cont Soln nt=14200 (Right)

Aircraft surface: Pressure Isosurface: -1 m/s x-velocity component Cutplane: Mach number

Alpha-Sweep Residuals: SARC+QCR, Re=20M

HIVI++

HIL

- Shock-induced separation from 2.75°
- Side-of-body separation in all cases

α	CL	CD	
2.23°	0.50	0.022517	
2.75°	0.577272	0.027241	
3.00°	0.609559	0.030213	
3.25°	0.633715	0.033557	
3.50°	0.651930	0.038059	
3.75°	0.669637	0.041414	
4.00°	0.686953	0.045781	
4.25°	0.703539	0.050348	

Drag Coefficient

Lift Coefficient

Pitching Moment Coefficient

METACOMP TECHNOLOGIES

Corrections applied to NTF tunnel data:

- Model blockage
- Wake blockage
- Tunnel buoyancy
- Lift interference

 $C_{\mathsf{M}} \text{ vs } C_{\mathsf{L}}$

Many tunnel installation effects can cause a shift:

- Error in true alpha measurement
- Error in moment-center offset
- Model/mount aeroelastic effects
- Unknown effects of tunnel corrections

C_M vs C_L – with shift in C_M

C_M vs C_L – with shift in C_M

Re: **4 million** Mach 0.85 T = -250° F Angle-of-Attack Sweep from 2.50° to 4.25°

 $\alpha = 2.75^{\circ} SARC-QCR$

Case 2a : Wing-Body Alpha Sweep

DPW-7: LoQ | Rey#=20M, M=0.85, α=2.75°, C₁=0.577271, C_D=0.027241, C_{MV}=-0.122704 DPW-7: LoQ | Rey#=20M, M=0.85, α=4.25°, C₁=0.703539, C_D=0.050348, C_{MV}=-0.092302 C_F 0.005 0.004 0.003 C_F 0.005 0.004 0.003 0.002 0.002 0.001 0.001 Case2 Metacomp LoQ R20M L3 A425 JAXAmedium CFD++20.1 FV SARC-QCR Case2 Metacomp LoQ R20M L3 A275 JAXAmedium CFD++20.1 FV SARC-QCR

28

α=4.25°SARC-QCR

α=4.25°SARC-QCR

α=2.75°SARC-QCR

Case 3 : Reynolds Number Sweep $(C_L=0.50)$

HIE

- Reynolds Sweep at Constant CI=0.50 and Mach 0.85
- Medium JAXA grids
- CFD++ Compressible RANS (Air, Perfect Gas)
- Turbulence Model: SARC-QCR
- All simulations run with C_L-driver

Reynolds #	P _{static} (kPa)	T _{static} (°K)	U_{∞} (m/s)	q (kPa)
5M LoQ	125	271.67	280.92	63
20M LoQ	127	101.77	171.94	64
20M HiQ	192	134.78	197.87	97
30M HiQ	189	101.78	171.94	96

- No shock induced separation in all cases
- ✓ Angles-of-attack settle below 2.45°

METACOMP TECHNOLOGIES

Drag Coefficient

&

Pitching Moment Coefficient

N.B.

METACOMP TECHNOLOGIES

> 5millionLoQ CFD Q=1325 / NTF Run 44 Q=1388 20millionLoQ CFD Q=1338 / NTF Run 250 Q=1313 20millionHiQ CFD Q=2031 / NTF Run 159 Q=1988 30millionHiQ CFD Q=2007 / NTF Run 146 Q=1989

Alphas are approximate and no sting correction applied to NTF data

Misc. Observations 1 #1: TE (Shock) & SOB/Wing Separations

SOB separation in terms of

vortex eye on body...

... and shock-induced separation location:

INOLOGIES

Both unambiguous for all cases

In most cases wing separation is more complicated...

Which Vortex Eye Do We Want?

 λ_2 /Q-criterion isosurfaces:

METACOMP TECHNOLOGIES

H 1 H + +

J Meta

RAA++

Case 1a : Juncture-Region SOB Separation

Jilleta

(H + + +)

ISI PAA++

Case 1a : Juncture-Region SOB Separation

(H 1 | +++

SOB separation: Tiny mesh

METACOMP TECHNOLOGIES ∫MetaFSI ∫CAA++

SOB separation: Coarse mesh

METACOMP TECHNOLOGIES Metafsi SCAA++

SOB separation: Medium mesh

METACOMP TECHNOLOGIES **Sheta**

ISI (PAA++

SOB separation: Fine mesh

METACOMP TECHNOLOGIES Metafsi SCAA++

SOB separation: Extra Fine mesh

METACOMP TECHNOLOGIES MetaFSI CAA++

SOB separation: Ultra Fine mesh

METACOMP TECHNOLOGIES MetaFSI SCAA++

SMetaFSI SCAA++

(H 1)++

Wing separation: Tiny mesh

METACOMP TECHNOLOGIES MetaFSI CAA++

H 1 +++

Wing separation: Coarse mesh

METACOMP TECHNOLOGIES **J** Meta

FSI (PAA++

Wing separation: Medium mesh

METACOMP TECHNOLOGIES **J** Meta

ISI CAA++

Wing separation: Fine mesh

METACOMP TECHNOLOGIES JNeta

HHHH

FSI (PAA++

Wing separation: Extra Fine mesh

METACOMP TECHNOLOGIES

HILF

S PAA++

Wing separation: Ultra Fine mesh

METACOMP TECHNOLOGIES

HIIH

SI (PAA++

Tiny mesh

METACOMP

MetaFSI CAA++

H + +

Coarse mesh

METACOMP TECHNOLOGIES MetaFSI SCAA++

HIR

Medium mesh

METACOMP TECHNOLOGIES MetaFSI CAA++

HIR

Fine mesh

METACOMP TECHNOLOGIES

SMetaFSI SCAA++

(H) | + +

ExtraFine mesh

METACOMP TECHNOLOGIES MetaFSI CAA++

HIL

UltraFine mesh

METACOMP TECHNOLOGIES MetaFSI CAA++

HIL

UltraFine mesh + surface srteamlines

METACOMP TECHNOLOGIES / Neta

SI PAA++

MetaFSI SCAA++

(H = 1 + +

HIE

Wing separation: C_L=0.50 2.50° LoQ AE CRM geometry

METACOMP TECHNOLOGIES PIVI++

Wing separation: α=2.75° 2.75° LoQ AE CRM geometry

METACOMP TECHNOLOGIES S PAA++

HIL

Wing separation: α=3.00° 3.00° LoQ AE CRM geometry

METACOMP TECHNOLOGIES HIVI++

HIL

Wing separation: α=3.25° 3.25° LoQ AE CRM geometry

METACOMP TECHNOLOGIES PUA++

HHI

Wing separation: α=3.50° 3.50° LoQ AE CRM geometry

METACOMP TECHNOLOGIES HIV++

HHIE

Wing separation: α=3.75° 3.75° LoQ AE CRM geometry

METACOMP TECHNOLOGIES RAA++

HII

Wing separation: α=4.00° 4.00° LoQ AE CRM geometry

METACOMP TECHNOLOGIES SI (PAA++

HHIE

Wing separation: α=4.25° 4.25° LoQ AE CRM geometry

METACOMP TECHNOLOGIES ISI (PAA++

MetaFSI SCAA++

(H = 1 + +

HIE

Wing separation: Re=5M, C_L=0.50 2.50° LoQ AE CRM geometry

METACOMP TECHNOLOGIES HIVI++

HIL

Wing separation: Re=20M, C_L=0.50* 2.50° LoQ AE CRM geometry

METACOMP TECHNOLOGIES

*(same as Case 2a, C_L=0.50)

HIL

Wing separation: Re=20M, C_L=0.50 2.50° HiQ AE CRM geometry

METACOMP TECHNOLOGIES

HIR

Wing separation: Re=30M, C_L=0.50 2.50° HiQ AE CRM geometry

METACOMP TECHNOLOGIES HIVI++

JMetaFSI JCAA++

H 1 +++

Wing separation: $C_L=0.58$ $q/E=0.334 \times 10^{-6}$

METACOMP TECHNOLOGIES **J** Neta

HIL

SI (FAA++

Wing separation: α =3.25° q/E=0.334 x10⁻⁶

METACOMP TECHNOLOGIES **J** Neta

HIL

FSI (PAA++

Wing separation: α =3.50° q/E=0.334 x10⁻⁶

METACOMP TECHNOLOGIES JNeta

H = 1 + +

FSI (PAA++

Wing separation: α=3.75° q/E=0.334 x10⁻⁶

METACOMP TECHNOLOGIES

J Meta

HIL

FSI (PAA++

HIL

Wing separation: α =4.00° q/E=0.334 x10⁻⁶

METACOMP TECHNOLOGIES ISI (FAA++

HIE

Wing separation: α =4.25° q/E=0.334 x10⁻⁶

METACOMP TECHNOLOGIES PIN++

Misc. Observations 2

ΜΕΤΑCOMP

CHNOLOGIES

#2: Confirmation of Sectional-Integration Macro

Latest version of Tecplot sectional-integration macro agrees with the built-in sectional integration tool in CFD++ ٠

Case 6 : Coupled Aero-Structural Simulation

- CFD++ is coupled with Metacomp's software suite designed for Fluid-Structure Interaction:
 - CSM++ : An in-house finite-element based structural mechanics and dynamics package
 - MetaFSI: A suite of tools designed to
 - Transfer loads from CFD++ to CSM++
 - Morph the CFD++ mesh based on structural displacements

FE Model: Eigenvalue Analysis

- Start with the FE model for wing/body/tail=0° configuration from NASA CRM website
- Create a wing/body configuration by removing all elements
 making up the horizontal tail
- Import NASTRAN model in to CSM++ and run modal analysis for both configurations
- Compare frequencies and mode shapes from CSM++ with Prof. Mavriplis' results (Abaqus)

Mode #	CSM++ (Wing/Body)	CSM++ (Wing/Body/Tail=0°)	Prof. Mavriplis
1	38.157 Hz (-3.06%)	38.147 Hz (-3.08%)	39.360 Hz
2	39.561 Hz (-3.37 %)	39.535 Hz (-3.44 %)	40.942 Hz

FE Model: Adjusted Eigenvalue Analysis

• Flow conditions: Mach 0.85, Re=20M, T_{total}=116° K

CHNOLOGIES

- Default value of Young's Modulus of the wing in FEM Model: E = 1.827x10¹¹ N/m²
- This resulted in a q/E of 0.351, higher than the intended q/E of 0.334!
- Young's Modulus adjusted to E = 1.918x10¹¹ N/m² to match test case definition

Mode #	CSM++ (Wing/Body)	CSM++ (Wing/Body/Tail=0°)	Prof. Mavriplis
1	38.991 Hz (-0.94%)	38.979 Hz (-0.97%)	39.360 Hz
2	40.432 Hz (-1.25%)	39.535 Hz (-1.32%)	40.942 Hz

FE Model: Mode Shapes Wing/Body/Tail=0°

METACOMP TECHNOLOGIES MetaFSI (CAA++

HILF

FE Model: Mode Shapes Wing/Body

State Contraction

METACOMP TECHNOLOGIES SMetaFSI SCAA++

H = 1 + +

METACOMP TECHNOLOGIES

Simulation Strategy

- Full aircraft model with ~ 4 million DoFs
 - Linear tetrahedral solid elements, bushing springs and kinematic rigid body elements
- Linear static analysis during FSI
- Pressure and wall shear from CFD++ transferred to CSM++ using nearest-neighbor interpolation
 - Computed deformations sent back to MetaFSI for *mesh morphing*
- Repeat till displacements converge to within a tolerance of 1x10⁻⁶

Simulation Strategy

- CFD++ used a *mirrored* Medium Baseline *NoQ* Re=30M grid
 - 164,065,758 x 2 = 328,131,516 cells
- Start with a steady-state "rigid" CFD++ run
- Restart to begin coupled aero-structural analysis
- Run CFD++ for 100 steps between each CFD-CSM coupling step
- SARC-QCR turbulence model requires recomputing wall distance function after every FSI iteration

Converging to a solution...

JMeta

HILLE

FIL++

Results: Deflected 50%-chord line

Results: Deflected 50%-chord line

11++

Results: Total Wing Twist

MetaFSI CAA++

Results: Total Wing Twist

MetaFSI SCAA++

FSI (GAA++

) Meta

HIL

MetaFSI CAA++

HIL

MetaFSI CAA++

) Meta

ISI PAA++

Wing Deformations, visualized

SMetaFSI SCAA++

 (H_{1})

METACOMP

SMetaFSI SCAA++

HIL

METACOMP TECHNOLOGIES

SMetaFSI SCAA++

HIL

Summary

✓ Good convergence for SARC+QCR, SST more problematic

OGIES

- ✓ SARC+QCR captures experimentally-observed pitch-break
 - SST showed bifurcating solution & larger juncture separation
- ✓ Juncture-region separation pattern not mesh converged
- Shock-induced separation and body vortex footprint clear and unequivocal in all cases, but...
 - Wing-vortex eye structure ambiguous in several runs
- Coupled aero/structural model predicted deflections reasonably well (after matching q/E)
 - Some discrepancies on length of deflected wings w.r.t. committee grids

Thank you 🕲

State - and

SMetaFSI SCAA++

(H = 1 + +)