

Mitsuhiro MURAYAMA and Yasushi ITO (JAXA)

Ryutaro FURUYA (Ryoyu Systems)

Background: JAXA's studies in past DPWs

- JAXA has participated in a series of DPWs since DPW-II
 - Multi-block structured grid solver: UPACS
 - □ Unstructured grid solvers: TAS code and FaSTAR

Solvers		DPW-II	DPW-III	DPW-IV	DPW-V	DPW-VI
	NS Eqs	Full/ Thin layer	Full/ Thin layer	Full	Full	
Multi-block	Turb	SA	SA/SST	SA/SA-QCR	SA/SA-QCR SST/SST-QCR	SA = SA-noft2-R
structured	Grids	Gridgen	Gridgen/ Boeing	Gridgen	Gridgen/ Common	
	NS Eqs	Full	Full	Full		Full
TAS code	Turb	SA	SA	SA		SA-QCR
Unstructured	Grids	TASMesh (MEGG3D)	MEGG3D	MEGG3D		MEGG3D/ NASA/Boing
	NS Eqs				Full	Full
FaSTAR	Turb				SA	SA-QCR
Unstructured	Grids				HexaGrid/ CommonHex	BOXFUN/ NASA

- □ Thin-layer NS shows less SOB flow separation and more grid-dependency
- □ SA with fine mesh around the corner shows larger SOB flow separation
- Effect of nonlinear Reynolds stress: Quadratic Constitutive Relation (QCR) improves the prediction of SOB flow separation.
- Consistent results are obtained between structured grid, UPACS, and unstructured grid, TAS code, with fine mesh
- Experiences of grid generation were increased based on well-defined DPW gridding guidelines

Solvers		DPW-II	DPW-III	DPW-IV	DPW-V	DPW-VI
	NS Eqs	Full/ Thin layer	Full/ Thin layer	Full	Full	
Multi-block	Turb	SA	SA/SST	SA/SA-QCR	SA/SA-QCR SST/SST-QCR	SA = SA-noft2-R
structured	Grids	Gridgen	Gridgen/ Boeing	Gridgen	Gridgen/ Common	
	NS Eqs	Full	Full	Full		Full
TAS code Unstructured	Turb	SA	SA	SA		SA-QCR
	Grids	TASMesh (MEGG3D)	MEGG3D	MEGG3D		MEGG3D/ NASA/Boing
	NS Eqs				Full	Full
FaSTAR	Turb	Turb			SA	SA-QCR
Unstructured	Grids				HexaGrid/ CommonHex	BOXFUN/ NASA

- □ Thin-layer NS shows less SOB flow separation and more grid-dependency
- □ SA with fine mesh around the corner shows larger SOB flow separation
- Effect of nonlinear Reynolds stress: Quadratic Constitutive Relation (QCR) improves the prediction of SOB flow separation.
- Experiences of grid generation were increas
 DPW gridding guidelines

- □ Thin-layer NS shows less SOB flow separation and more grid-dependency
- □ SA with fine mesh around the corner shows larger SOB flow separation
- Effect of nonlinear Reynolds stress: Quadratic Constitutive Relation (QCR) improves the prediction of SOB flow separation.
- Consistent results are obtained between structured grid, UPACS, and unstructured grid, TAS code, with fine mesh
- Experiences of grid generation were increased based on well-defined DPW gridding guidelines

Solvers		DPW-II	DPW-III	DPW-IV	DPW-V	$\alpha = 4^{\circ}, M$	= 0.85, Re	e = 5M
UPACS Multi-block structured	NS Eqs	Full/ Thin layer	Full/ Thin layer	Full			6	Ср
	Turb	SA	SA/SST	SA/SA <mark>-QCR</mark>	SA/SA-QC SST/SST-QCR		SA	1.20 0.70 0.20 -0.30 -0.80
	Grids	Gridgen	Gridgen/ Boeing	Gridgen	Gridgen/ Common			-1.30
	NS Eqs	Full	Full	Full				
TAS code	Turb	SA	SA	SA				
Unstructured	Grids	TASMesh (MEGG3D)	MEGG3D	MEGG3D		SA	-QCR	Yamamoto, et al. AIAA 2012-2895
	NS Eqs				Full	Full		
FaSTAR	Turb				SA	SA-QCR		
Unstructured	Grids				HexaGrid/ CommonHex	BOXFUN/ NASA		5

- □ Thin-layer NS shows less SOB flow separation and more grid-dependency
- □ SA with fine mesh around the corner shows larger SOB flow separation
- Effect of nonlinear Reynolds stress: Quadratic Constitutive Relation (QCR) improves the prediction of SOB flow separation.
- Consistent results are obtained between structured grid, UPACS, and unstructured grid, TAS code, with fine mesh
- Experiences of grid generation were increased based on well-defined DPW gridding guidelines

Solvers		DPW-II	DPW-III	DPW-IV	DPW-V	DPW-VI
UPACS Multi-block structured	NS Eqs	Full/ Thin layer	Full/ Thin layer	Full	Full	
	Turb	SA	SA/SST	SA/SA <mark>-QCR</mark>	SA/SA-QCR SST/SST-QCR	SA = SA-noft2-R
	Grids	Gridgen	Gridgen/ Boeing	Gridgen	Gridgen/ Common	
	NS Eqs	Full	Full	Full		Full
TAS code Unstructured	Turb	SA	SA	SA		SA-QCR
	Grids	TASMesh (MEGG3D)	MEGG3D	MEGG3D		MEGG3D/ NASA/Boing
	NS Eqs				Full	Full
FaSTAR Unstructured	Turb	Turb			SA	SA-QCR
	Grids				HexaGrid/ CommonHex	BOXFUN/ NASA

JAXA's studies using TAS code for DPW-VII

- To leverage experiences from past DPWs
 - □ Grid generation of a series of unstructured grids by MEGG3D: JAXA_Grids.REV00
 - □ Full-NS with SA-noft2-R-QCR on JAXA's grids
 - □ Some comparisons with SA-noft2-R
- Test cases
 - □ Case 1a&b Grid Convergence Study at Re=20M & 5M
 - □ Case 2a&b Alpha Sweep at Re=20M & 5M
 - \Box Case 3 Reynolds Number Sweep At Constant C_L

Solvers		DPW-II	DPW-III	DPW-IV	DPW-V	DPW-VI	DPW-VII	
	NS Eqs	Full/ Thin layer	Full/ Thin layer	Full	Full			
Multi-block	Turb	SA	SA/SST	SA/SA <mark>-QCR</mark>	SA/SA-QCR SST/SST-QCR	SA = SA-noft2-R		
structured	Grids	Gridgen	Gridgen/ Boeing	Gridgen	Gridgen/ Common			
	NS Eqs	Full	Full	Full		Full	Full	
TAS code	Turb	SA	SA	SA		SA-QCR	SA/SA-QCR	
Unstructured	Grids	TASMesh (MEGG3D)	MEGG3D	MEGG3D		MEGG3D/ NASA/Boing	MEGG3D	
	NS Eqs				Full	Full	Full, linearized URANS	
FaSTAR	Turb				SA	SA-QCR	SA/SA-QCR/AMM-QCR	
Unstructured	Grids				HexaGrid/ CommonHex	BOXFUN/ NASA	MEGG3D 7	

Flow solver: unstructured TAS-code

- □ Solving full compressible Navier-Stokes equations
- □ SA-noft2-R (C_{rot} =1)-QCR2000 with our experience in DPWs
- Fully turbulent
- Computations at higher α with warm start: restart from previous solution at lower α with velocity vector rotation to accelerate solution convergence

	TAS-code
Discretization	Cell-vertex finite volume
Convection flux	HLLEW 2 nd -order UMUSCL w/ Venkatakrishnan's limiter (K=5)
Time integration	LU-symmetric Gauss-Seidel
Turbulence model	SA-noft2-R(C _{rot} =1)-QCR2000, SA-noft2-R(C _{rot} =1)

Computational Grids: JAXA_Grids.Rev00 in DPW-7 website

Grid generation software

- □ MEGG3D Mixed Element Grid Generator in 3D
 - Unstructured hybrid surface/volume grid generator
 - □ Surface: Triangle & rectangle, Volume: Prism, hexa, tetra & pyramid
- Grid generation method with wing deformation
 - Baseline grid for config. w/o deformation was generated, then the grid was deformed based on the wing deformation

	Tiny	Coarse	Medium	Fine	Extra-Fine	Ultra-Fine
Nodes	9 M	27 M	60 M	112 M	184 M	291 M
Cells	25 M	76 M	164 M	295 M	476 M	739 M
Target Y ⁺	1.00	0.67	0.50	0.40	0.33	0.29

Computational Grids: JAXA_Grids.Rev00 in DPW-7 website

- Case 1a&b: Grid Convergence Study at Re=20M & 5M
- Case 2a&b: Alpha Sweep at Re=20M & 5M
- Case 2a+: Comparison of turbulence models at Re=20M
 SA-noft2-R(Crot=1)-QCR2000 vs SA-noft2-R(Crot=1)
- Case 3: Reynolds Number Sweep At Constant C_L

Case 1a&b: Grid Convergence Study at Re=20M & 5M

- Case 2a&b: Alpha Sweep at Re=20M & 5M
- Case 2a+: Comparison of turbulence models at Re=20M
 SA-noft2-R(Crot=1)-QCR2000 vs SA-noft2-R(Crot=1)
- Case 3: Reynolds Number Sweep At Constant C_L

- Almost straight grid convergence from Tiny to Ultra-Fine
 - □ AoA: Variations with grid size < 0.05deg
 - □ CD: Variations with grid size < 5cts. (CD 1cts. = 0.0001)
- Almost constant difference between result of two Re conditions at each grid level

Almost straight grid convergence from Tiny to Ultra-Fine

□ CD_SF

Less variations with grid size < 2cts.

Tendency to increase with grid size

Almost constant difference between result of two Re conditions at each grid level

- Almost straight grid convergence from Tiny to Ultra-Fine
 CD FUSELAGE: Less variations with grid size < 2cts.
- Almost constant difference between result of two Re conditions at each grid level

- Almost straight grid convergence from Tiny to Ultra-Fine
- Almost constant difference between result of two Re conditions at each grid level

- Case 1a&b: Grid Convergence Study at Re=20M & 5M
- Case 2a&b: Alpha Sweep at Re=20M & 5M
- Case 2a+: Comparison of turbulence models at Re=20M
 SA-noft2-R(Crot=1)-QCR2000 vs SA-noft2-R(Crot=1)
- Case 3: Reynolds Number Sweep At Constant C_L

Case 2a&b: Alpha Sweep at Re=20M & 5M

- Almost constant shift between results of two Re, but some differences after pitching-moment break
- The break of curve is observed around AoA=3.25

- Case 1a&b: Grid Convergence Study at Re=20M & 5M
- Case 2a&b: Alpha Sweep at Re=20M & 5M
- Case 2a+: Comparison of turbulence models at Re=20M
 - □ SA-noft2-R(Crot=1)-QCR2000 vs SA-noft2-R(Crot=1)
- Case 3: Reynolds Number Sweep At Constant C_L

w/o QCR
 Lift and pitching moment curves break at AoA=3.5deg

23

Case 2a+: SA-noft2-R-QCR2000 vs SA-noft2-R

 w/o QCR: large SOB separation occurs at AoA=3.5 and it results in break of lift and pitching moment curves ^{0.45}

0.75

- Case 1a&b: Grid Convergence Study at Re=20M & 5M
- Case 2a&b: Alpha Sweep at Re=20M & 5M
- Case 2a+: Comparison of turbulence models at Re=20M
 SA-noft2-R(Crot=1)-QCR2000 vs SA-noft2-R(Crot=1)
- Case 3: Reynolds Number Sweep At Constant C_L

Case 3: Reynolds Number Sweep At Constant C_L

Some jumps are found at Re=20M by the difference of Q especially for CD_PR and CM

27

JAXA's TAS Code Results for DPW-VII were shown

□ Case 1a&b Grid Convergence Study at Re=20M & 5M

 Straight grid convergence from Tiny to Ultra-Fine and constant difference between result of two Re conditions at each grid level

□ Case 2a&b Alpha Sweep at Re=20M & 5M

- Shock-induced flow separation expands around mid-span from AoA=3.00
- No large SOB flow separation is found at both Re conditions with QCR2000
- w/ QCR: shock slightly shifts forward
- w/o QCR: Large SOB flow separation suddenly occurs at AoA=3.5 and it results in break of lift and pitching moment curves
- Case 3 Reynolds Number Sweep At Constant C_L
 - Some jump at Re=20M by the difference of Q and deformation especially for CD_PR and CM

.

