

OVERFLOW & GGNS-T1 Analysis of the NASA CRM WB configuration for DPW-VII

Ben Rider Dmitry Kamenetskiy Behzad Reza Ahrabi Joshua Krakos

Boeing Commercial Airplane Boeing Research & Technology Boeing Research & Technology Boeing Research & Technology

Flow Solvers and Grid Summary

- OVERFLOW (NASA)
- GGNS-T1 (Boeing)

Convergence History

Cases Analyzed

- OVERFLOW
- GGNS-T1

Results

- Case 1: CRM Wing-Body Grid Convergence Study
- Case 2: CRM Wing-Body Alpha Sweep
- Case 3: CRM Wing-Body Reynolds Number Sweep At Constant CL
- Case 4: CRM Wing-Body Alpha Sweep with Grid Adaptation

Conclusions

OVERFLOW: Solver, Grid and Computing Platform

OVERFLOW version 2.3e

Same setup as used for past workshops for consistency

- 2nd order central differencing
 - Central / Beam-Warming scalar pentadiagonal scheme (IRHS=0, ILHS=2)
- SA turbulence model (SA-neg-noft2) with:
 - RC: rotation/curvature corrections
 - QCR: nonlinear stress model via QCR
- fully turbulent boundary layer, free stream initial conditions
- full N-S, exact wall distance calculation

Common Overset Grid

- Provided by Committee

• Utilized Ivy Bridge nodes with 2 ten-core processor per node

case	grid	points (M)	cores	sec/it	sec/it/grid	iterations	wall clock
Т	Tiny	5.72 M	40	0.94	16.550e-8	20000	5.1 hrs
С	Coarse	18.62 M	40	1.95	10.450e-8	20000	10.5 hrs
М	Medium	43.32 M	120	1.60	3.703e-8	25000	10.9 hrs
F	Fine	83.66 M	220	2.10	2.511e-8	25000	14.3 hrs
Х	Extra Fine	143.47 M	300	2.28	1.599e-8	30000	18.8 hrs
U	Ultra Fine	226.59 M	460	2.79	1.240e-8	35000	26.9 hrs

GGNS-T1

Discretization

- SU/PG(1)
 - Tetrahedral cells
 - piecewise-linear, globally continuous finite elements
 - Residual-based stabilization
- Shock capturing/artificial dissipation by (Glasby et.al.[1])

Solver

- RANS, steady-state (SA, SA-QCR2000, SARC-QCR2000 fully turbulent)
- Fully coupled turbulence equations
- Exact Jacobians (except SARC) with operator overloading
- Pseudo-transient continuation to steady-state
- Newton's method
- Parallel MPI implementation based on PETSc [2]
- 12 orders for the dual-volume weighted discrete residuals
- 10 orders for the adjoint linear system residual

Adaptation : EPIC [3]

- Goal oriented (GO) " ϵ_1 + ϵ_2 , multi-component" from [4]
- 400 cores x 24 hours for 24 solver/adaptation cycles
 - Includes primal and adjoint solves and grid adaptation times

EPIC Adapted Grids

Drag Adjoint Adaption

case	grid	points (M)
-	L0 – L13	0 -> 1.8 M
-	L14 – L16	~3.6 M
-	L17	~5.0 M
-	L18 - L20	~6.8 M
-	L21	~10.9 M
-	L22 – L24	~13.5 M

GGNS-T1/EPIC Grid Visualization

Forces/Moments for Mach=0.85, CL=0.58

Case 1: Grid Convergence Study (CL=0.58)	OVERFLOW	GGNS-T1
Case 1a: Rey# 20M	X	X
Case 1b: Rey# 5M	X	X
Case 2: Alpha Sweep (Fixed Grid)	OVERFLOW	GGNS-T1
Case 2a: Rey# 20M	X	X
Case 2b: Rey# 5M	X	X
Case 3: Reynolds Number / Q Sweep	OVERFLOW	GGNS-T1
Case 3: CL=0.50	X	X
Case 4: Alpha Sweep (Grid Adaptive)	OVERFLOW	GGNS-T1
Case 4a: Rey# 20M		X
Case 4b: Rey# 5M		X

CRM Wing-Body Grid Convergence Study

Case 1a: Mach=0.85, CL=0.58, Rey# 20M

Closed Symbols

Case 1b: Mach=0.85, CL=0.58, Rey# 5M

- Open Symbols

- Case 1a: Mach=0.85, CL=0.58, Rey# 20M
 - Closed Symbols
- Case 1b: Mach=0.85, CL=0.58, Rey# 5M
 - Open Symbols

0.0380

0.0360

0.0340

C^D (Total)

0.0300

0.0280

0.0260 0.0E+00

00

- Case 1a: Mach=0.85, CL=0.58, Rey# 20M
 - Closed Symbols
- Case 1b: Mach=0.85, CL=0.58, Rey# 5M
 - Open Symbols

0.0380

0.0360

0.0340

C^D (Total)

0.0300

0.0280

Case 1a: Mach=0.85, CL=0.58, Rey# 20M

Closed Symbols

Case 1b: Mach=0.85, CL=0.58, Rey# 5M

- Open Symbols

Case 1a: Mach=0.85, CL=0.58, Rey# 20M

Closed Symbols

Case 1b: Mach=0.85, CL=0.58, Rey# 5M

Open Symbols

Case 1a: Mach=0.85, CL=0.58, Rey# 20M

- Closed Symbols
- Case 1b: Mach=0.85, CL=0.58, Rey# 5M
 - Open Symbols

Copyright © 2013 Boeing. All rights reserved

Pressure Comparison (CL=0.58, Rey# 20M)

Pressure comparison: Section 12 – Eta = 0.7268

SAIAA

Spanload comparison

Sectional Moment comparison

CRM Wing-Body Alpha Sweep

- Case 2a: Mach=0.85, Rey# 20M, Alpha=[2.75° 4.25° by 0.25°]
 - Closed Symbols
- Case 2b: Mach=0.85, Rey# 5M, Alpha=[2.75° 4.25° by 0.25°]
 - Open Symbols

- Case 2a: Mach=0.85, Rey# 20M, Alpha=[2.75° 4.25° by 0.25°]
 - Closed Symbols
- Case 2b: Mach=0.85, Rey# 5M, Alpha=[2.75° 4.25° by 0.25°]
 - Open Symbols

- Case 2a: Mach=0.85, Rey# 20M, Alpha=[2.75° 4.25° by 0.25°]
 - Closed Symbols
- Case 2b: Mach=0.85, Rey# 5M, Alpha=[2.75° 4.25° by 0.25°]
 - Open Symbols

- Case 2a: Mach=0.85, Rey# 20M, Alpha=[2.75° 4.25° by 0.25°]
 - Closed Symbols
- Case 2b: Mach=0.85, Rey# 5M, Alpha=[2.75° 4.25° by 0.25°]
 - Open Symbols

Spanload comparison

SAIAA

Case 2: CRM Wing-Body Alpha Sweep

Spanload comparison

dalaa

Case 3

Wing-Body Reynolds Number Sweep At Constant CL

- 1. CL=0.50, Mach=0.85, LoQ, Rey# 5M
- 2. CL=0.50, Mach=0.85, LoQ, *Rey# 20M*
- 3. CL=0.50, Mach=0.85, *HiQ*, Rey# 20M
- 4. CL=0.50, Mach=0.85, HiQ, *Rey# 30M*

AIAA-2008-6919, Vassberg, et al. "Development of a Common Research Model for Applied CFD Validation Studies"

Case 3: Wing-Body Reynolds # Sweep At Constant CL=0.50

Case 3:

- 1. CL=0.50, Mach=0.85, LoQ, Rey# 5M
- 2. CL=0.50, Mach=0.85, LoQ, Rey# 20M
- 3. CL=0.50, Mach=0.85, *HiQ*, Rey# 20M
- 4. CL=0.50, Mach=0.85, HiQ, Rey# 30M

Adding the model support system to the CFD model changes wing, tail and aft body pressures and increases CM by ~0.03 and α by ~0.2° at CL = 0.50 for the Wing-Body-Tail configuration

Case 3: Wing-Body Reynolds # Sweep At Constant CL=0.50

Case 3:

- 1. CL=0.50, Mach=0.85, LoQ, Rey# 5M
- 2. CL=0.50, Mach=0.85, LoQ, *Rey# 20M*
- 3. CL=0.50, Mach=0.85, *HiQ*, Rey# 20M
- 4. CL=0.50, Mach=0.85, HiQ, Rey# 30M

Adding the model support system to the CFD model changes wing, tail and aft body pressures and increases CM by ~0.03 and α by ~0.2° at CL = 0.50 for the Wing-Body-Tail configuration

CRM Wing-Body Alpha Sweep with Grid Adaptation

Case 4: CRM Wing-Body Alpha Sweep with Grid Adaptation

- Case 4a: Mach=0.85, Rey# 20M, Alpha=[2.75° 4.25° by 0.25°]
 - Closed Symbols
- Case 4b: Mach=0.85, Rey# 5M, Alpha=[2.75° 4.25° by 0.25°]
 - Open Symbols

Solver Comparison

- The agreement between very different grid and solver strategies is very impressive

Turbulence Model

- SA without QCR results in non-physical side-of-body separation
 - Consistent with previous DPW results
- RC terms have an impact on forces/moments
 - Reduced lift and more positive pitching moment at constant alpha

Grid Adaption

- GGNS-T1 with EPIC adaption based on the drag adjoint achieves results for Lift, Drag, and Pitching Moment comparable to OVERFLOW on the L6-UltraFine grid with an order of magnitude smaller grid!
 - Overflow L6: 226.6M
 - GGNS-T1 L24: ~13M
- Alternative grid adaption based on flow features and/or the lift adjoint based metrics converge to the same result as the those shown here based on the drag adjoint.

- [1] K R Holst, R S Glasby, J T Erwin, D L Stefanski, J G Coder, High-Order Shock Capturing Techniques using HPCMP CREATE-AV Kestrel, AIAA Scitech 2019 Forum, 2019
- [2] <u>https://petsc.org</u>
- [3] Todd Michal and Joshua Krakos, Anisotropic Mesh Adaptation Through Edge Primitive Operations, AIAA Paper 2012--159
- [4] Dmitry S. Kamenetskiy, Joshua A. Krakos, Todd Michal, Francesco Clerici, Frédéric Alauzet, Adrien Loseille, Michael A. Park, Stephen L. Wood, Aravind Balan, Marshall C. Galbraith, Anisotropic Goal-Based Mesh Adaptation Metric Clarification and Development, AIAA paper 2022-1245

