

Drag Prediction Workshop VII

NLR Grids & Results | Michel van Rooij and Peter Blom

- Grid generation at NLR
- Solver Description
- Results
- Conclusion

(nlr)

Grid Generation at NLR

- Grid smoothing
 - surface and/or volume smoothing
 - option to freeze specified faces / edges
- Grid stretching
 - near-wall cell size and #cells in NS-blocks specified
 - cell size can be adjusted locally

Grid topology and cell count (L3M)

grid	#blocks*	#cells	#points
L1T	592	4,344,832	5,102,256
L2C	760	15,100,992	16,923,108
L3M	1,408	36,318,720	40,199,392
L4F	2,445	71,552,320	78,780,353

*after splitting for MPI

(nlr

Solver Description

- In-house, compressible flow solver
- Both steady and unsteady (Euler, (u)RANS, LES, hybrid RANS-LES)
- Many capabilities, including:
 - Aeroelasticity
 - Aeroacoustics
 - Adjoint optimization
 - Overset & discontinuous grids

- 2nd order spatial discretization
- 5-stage Runge-Kutta time integration with residual averaging
- Multigrid friendly for 3 grid levels
- Turbulence Models:
 - Standard SST
 - Custom EARSM
 - Based on TNT k-ω EARSM used at NLR*
 - Modified production term in ω -equation[†]
 - More generalized formulation
 - Aims to provide similar results to SST with adverse pressure gradients

 *see H.S. Dol, J.C. Kok and B. Oskam. Turbulence modelling for leading-edge vortex. AIAA 2002-0843 for more details
† production term based on: C.G. Speziale and T.B. Gatski. Analysis and modelling of anisotropies in the dissipation rate of turbulence, Journal of Fluid Mechanics, 344:155–180, 1997.

Results

Grid Convergence Study

Grid Level	C _D (counts)	C _{Di} -C _{Di-1} (counts)	C _{Di} -C _{D4} (counts)	C _{Di} -C _{D0} * (counts)
1	290.527	N/A	14.52	16.9
2	280.597	9.93	4.59	7.01
3	277.666	2.93	1.66	4.08
4	276.003	1.66	0	2.4

*Where C_{D0} is based on Richardson extrapolation

Grid Level	C _D (counts)	C _{Di} -C _{Di-1} (counts)	C _{Di} -C _{D4} (counts)	C _{Di} -C _{D0} * (counts)
1	292.551	N/A	12.73	14.39
2	283.224	9.33	3.40	5.07
3	280.974	2.25	1.15	2.82
4	279.825	1.15	0	1.67

*Where C_{D0} is based on Richardson extrapolation

InU

Angle of Attack Sweep

 $\Delta C_D = C_{D,SST} - C_{D,EARSM}$

 $\Delta C_D = C_{D,SST} - C_{D,EARSM}$

InUr

Reynolds Number Sweep

1-1

Conclusion

• Many iterations required on higher grid levels

- Possibly due to solution close to unsteady
- Convergence similar for both turbulence models
- Finest grid level within 3 drag counts according to Richardson extrapolation
- AoA sweep
 - Main difference at higher AoA due to shock location
 - EARSM predicts shock location further downstream

Fully engaged NLR - Netherlands Aerospace Centre

Anthony Fokkerweg 2 1059 CM Amsterdam The Netherlands

p) +31 88 511 31 13 e) info@nlr.nl i) www.nlr.org Voorsterweg 31 8316 PR Marknesse The Netherlands

p)+31 88 511 44 44 e)info@nlr.nl i)www.nlr.org