

USM3D-ME Simulations for DPW-VII: Expanding the Envelope

Brent Pomeroy Mohagna Pandya

NASA Langley Research Center Configuration Aerodynamics Branch **Boris Diskin** National Institute of Aerospace

Taylor Kate Boyett

NASA Langley Research Center Intern, Configuration Aerodynamics Branch Senior, Georgia Institute of Technology

CFD Drag Prediction Workshop VII: Expanding the Envelope 2022 AIAA Aviation Forum June 25-26, 2022

Outline

- USM3D-ME Overview
- Grids and Computational Methodology

Selected Cases

- Case 1a: Grid Convergence Study for Re=20 million
- Case 2a: Alpha Sweep for Re=20 million
- Case 3: Reynolds Number Sweep

USM3D-ME (TetrUSS Flow Solver)

- Builds on rich legacy of USM3D tetrahedral grid flow solver
- Cell-centered, finite-volume, mixed-element, unstructured-grid flow solver
 - Euler and RANS equations with second-order spatial accuracy
 - Spalart-Allmaras (SA) turbulence model (standard, negative, RC, and QCR2000)
- Upwind spatial discretization for mean flow inviscid flux
 - Cell gradients using Green-Gauss method and nodal solutions
 - Options for flux functions: FDS, HLLC, LDFSS, FVS, HLLE, etc.
 - Cell- and face-based gradient limiters: Barth-Jespersen, Venkat, van Albada
- Second-order diffusion; face-gradients based on Mitchell's method

USM3D-ME (TetrUSS Flow Solver)

- Standard and specialized boundary conditions
- Force-term approach for simulation of propellers and other applications
- Time integration
 - Steady state with local time-stepping
 - Second-order BDF2 for temporal accuracy
- Rigid-body 6-DoF motion support
- Parallelized using MPI paradigm; excellent scalability
- Nonlinear iteration methods
 - Preconditioner-Alone (PA); baseline solver technology
 - Hierarchical Adaptive Nonlinear Iteration Method (HANIM); stronger solver for improved robustness and efficiency; automatic update of CFL

AIAA 2013-2541, AIAA Journal, 54(9) 2016, AIAA Journal, 55(10) 2017, AIAA 2019-2333, AIAA Journal, 59(8) 2021, AIAA Journal, 59(11) 2021

Compute Resources

- NASA Advanced Supercomputing (NAS) facility
- Located at NASA Ames Research Center
 - More than 11,000 nodes and 241,000 compute cores
 - Intel and AMD chips
 - TOSS3 operating system

Resource usage for DPW-VII

- IvyBridge (Intel) chips
- Between 600 and 2,500 processors
- Medium cases run on 600 processors
- Walltime totaled a few hours, depending on the grid and convergence criteria

Grids

Used mixed-element JAXA-supplied grids

- Grid convergence study performed on all six grids
- Majority of work executed on medium-density grid
- Nondimensionalized by mean aerodynamic chord

	Tiny	Coarse	Medium	Fine	Extra Fine	Ultra Fine
Level	L1	L2	L3	L4	L5	L6
Approximate Cell Count (Millions)	8.7	26.9	60.2	111.8	184.1	291.2

Aeroelastic deformations incorporated in grids

Computational Approach

- RANS scheme for all simulations
- Turbulence model
 - SA-neg QCR-2000
 - RC not utilized as best practices have not yet been established
 - First-order advection term

Inviscid flux for meanflow equations

- Second-order
- Roe's flux different splitting scheme without gradient limiters

Case 1a: Grid Convergence

Simulations performed on all six grids

- Rapid iterative convergence from HANIM methodology
- Solution residuals reduced below 1.0E-13
- Solution value taken at final iteration

- Simulations performed in $C_{\rm L}\text{-matching}$ mode

- Tolerance for C_L set at committee-specified +- 0.0001
- Angle of attack perturbed automatically to match prescribed $C_{\rm L}$ within the tolerance limits
- Angle of attack adjusted after residuals are reduced 1.5 orders of magnitude below the initial freestream state

Case 1a: Convergence History

- Convergence history monitored and stopped by the user
- Drag has converged within six significant digits for all cases

Case 1a: Medium and Ultra Fine Grids

Case 2a: Iterative Convergence

- Solution residuals reduced below 1.0E-13
- Low-alpha cases converged in ~1k iterations
- Converged solutions observed after 5k iterations for all simulations

Case 2a: Aerodynamic Performance

- Pitch break observed between C_{L} of ~0.62 and ~0.65 (3 to 3.25 deg.)
- Bucket of pitching moment curve at C_M of about -0.133

Case 2a: Surface Separation Behavior

- Surface contours of C_F with streamlines
- Shock-induced separation observed at 3.00 deg.
- Midspan separation seen at 3.25 deg. (consistent with pitch break)

Case 2a: Inboard Surface Cuts

- Cuts shown for the fixed-alpha conditions
- Attached flow present across all simulations
- Consistent with previous contour plots

Case 2a: Mid-Span Surface Cuts

- Region of earliest separation
- Extent of downstream separation increases with larger alphas
- Trailing edge flow separation for alpha above 3.00 deg.

Case 3: Reynolds Number Sweep

- Significant increase in drag for decreasing Reynolds number as the wing moves off design
- Deviations in C_M ~0.016 between two 20 million cases (different conditions and lofts)

www.nasa.gov

Case 3: Surface Pressure Comparison

• Spanwise flow observed for low-Reynolds number case

Conclusions

- USM3D-ME results for cases 1a, 2a, and 3 presented
- Rapid convergence to machine-zero residuals achieved (less than 1,000 iterations for some cases)
- Strong grid convergence across all six JAXA grids
- Pitch break at $C_{L} \sim 0.62$ (alpha ~ 3.15 deg.)
- Committee-required data files previously provided

Acknowledgments

- NAS for compute facilities
- Appreciation extended to the DPW-7 workshop committee for providing grids, the data format, and data reduction scripts

