

DPW 6 Summary of Participant Data Case 1: Code Verification

Chris Roy (Virginia Tech) and the DPW Organizing Committee

Outline:

- Motivation for Case #1
- Problem description
- Participant data
 - Forces and moments
 - Pressure and shear stress distributions
- Effects to examine
 - Turbulence model
 - Grid type
 - Order of accuracy of turbulence equations
- Conclusions

Motivation for Case #1:

- Past DPW Workshops had many instances of (ostensibly) the same turbulence model converging to different results with mesh refinement
- There should only be a single asymptotic answer for each model
- These problems could be attributed to a number of sources:
 - Coding mistakes
 - Inconsistent algorithms or boundary conditions
 - Variations in the version of the turbulence model
 - Effects of grid type (structured, unstructured, etc.)
 - Ad hoc limiters on the turbulence equations (e.g., production)
 - Insufficient iterative convergence
- Case #1 was designed to help identify contributions which suffered from these issues

Washington D.C. - June 2016

Problem description: boundary conditions

- NACA 0012 airfoil
- Mach 0.15
- $Re_c = 6M$
- Fixed Riemann BCs at ~500 chords
- Problem definition and grids supplied by the NASA Langley TurbModels web site:

http://turbmodels.larc. nasa.gov/naca0012nu merics_val.html

Problem description: C-grids

Problem description: primary grids used

Family I

Family II (recommended)

Participant data summary for Case #1:

- 30 Data Total Data Submittals
- 15 Teams/Organizations
- Turbulence Models:
 - 22 SA (all types)
 - 4 SST
 - 1 k-kl, 1 k-e Lam, 1 EARSM, 1 LBM-VLES

Grid Types:

- 4 Structured Grid Family I (2 teams)
- 21 Structured Grid Family II (11 teams) ← recommended grids
- 1 O-Grid
- 2 Cartesian (2 teams)
- 1 Unstructured
- 1 Adapted Unstructured

Washington D.C. – June 2016

Organisation	Name	Soln ID	Code	Turbulence Model	Case 1							
					Family	113x33	225x65	449×129	897x257	1793x513	3585×1025	7169x2049
Boeing, BCA Advanced Concepts, Long Beach CA	John Vassberg	A1	Overflow v2.2k	SA-RC	II				Х			
		A2	Overflow v2.2k	SA-RC-QCR2000	П	Χ	Χ	Χ	Χ	Χ		
NASA Langley Research Center, FUN3D	Khaled S. Abdol-Hamid	B2	FUN3D 12.8	k-kL-MEAH2015	II	Х	Х	Х	Х	Х	Х	
CARDC	Jiangtao Chen	D1	Mflow	SA	П	Χ	Χ	Χ	Χ	Χ		
		D3	Mflow	SST	П	Χ	Χ	Χ	Χ	Χ		
	Yan Sun	T1	TRIP	SA	I	Χ	Χ	Χ	Χ	Χ		
		T2	TRIP	SST-2003	I	Χ	Χ	Χ	Χ	Χ		
JAXA (FaSTAR Code), Ryoyu	Atsushi Hashimoto	E1	FaSTAR	SA-noft2	II	Χ	Χ	Χ	Χ	Χ	Х	x
Systems		E2	FaSTAR	SA-noft2	П	Χ	Χ	Χ	Χ	Χ	Х	x
		E3	FaSTAR	SA-noft2	I	Χ	Χ	Χ	Χ	Χ	Χ	x
		E4	FaSTAR	SA-noft2	I		Χ	Χ	Χ	Χ	Χ	
EXA Powerflow	Benedikt König	G1	PowerFLOW	LBM-VLES	Cartesi	0	0	0	0	0	0	0
CFMS, Zenotech, ARA	Andrei Cimpoeru	H2	Edge	EARSM	П	Χ	Χ	Χ	Χ	Χ	Χ	
Mentor Graphics	Chris Watson	12	FloEFD	k-e Lam-Bremhorst	Cartesi	an				0	0	0
MetaComp	Uriel Goldberg	J1	CFD++	SA	II	Χ	Χ	Χ	Χ	Χ	Χ	Х
		J2	CFD++	SST	П	Χ	Χ	Χ	Χ	Χ	X	Х
Kawasaki Heavy Industries, Ltd., Aerospace	Taku Nagata	K1	Cflow: 2nd order	` '	II						Х	
		K2	Cflow: 3rd order	SA-noft2-QCR (1st)	П	Χ	X	Χ	Χ	Χ	Χ	x

Washington D.C. – June 2016

Organisation	Name	Soln ID	Code	Turbulence Model	Case 1							
					Family	113x33	225x65	449×129	897x257	1793x513	3585x1025	7169x2049
CAd Lab, IIS, Bangalore, S&I Engineering Solutions	Balakrishnan	N1	HiFUN	SA (1st)	O-Grid	х	X	Χ				
ONERA	David Hue	01	elsA	SA	П		Χ		Χ		Х	X
Boeing, St. Louis	Mori Mani	P1	BCFD	SA	Unstr			Χ	Χ	Χ		
		P2	GGNS	SA-neg	Adapt		Ad	ap	ted	M	esh	
MDOlab, University of Michigan	Joaquim R. R. A. Martins	Q1	SUMad	SA 1stOrder	H	Χ	Χ	Χ	Χ	Χ	Χ	
		Q2	SUMad	SA	П	Χ	Χ	Χ	Χ	Χ	Χ	
Embraer S/A	Rodrigo Felix de Souza	V1	CFD++	SA	П	Χ	Χ	Χ	Χ	Χ	Χ	x
		V2	CMSoft-AERO	SA	П	Χ	Χ	Χ	Χ	Χ	Χ	x
		V3	CFD++	SST	H	Χ	Χ	Χ	Χ	Χ	Χ	x
JAXA, Ryoyu Systems	Yasushi Ito	Z1	TAS	SA-noft2-R-QCR-K1	П	Χ	Χ	Χ	Χ	Χ	Х	x
		Z2	TAS	SA-noft2-R-QCR-K5	П	Χ	Χ	Χ	Χ	Χ	Χ	
		Z3	TAS	SA-noft2-R-QCR-K10	П	Χ	Χ	Χ	Χ	Χ	Χ	x

Washington D.C. - June 2016

Washington D.C. - June 2016

Washington D.C. - June 2016

Washington D.C. - June 2016

Effects of grid type

Effects of grid type

Effects of grid type

Conclusions for Case #1

- Grid effects and other numerical issues (iterative convergence?) are still polluting the results
- Grid type is important
 - Cartesian methods appear to either converge slowly or not converge
- Grid adaptation helps: the single adapted grid case honed in on the (correct) converged values at much lower cell counts
- Adequate code verification is still not being done
 - Ideal approach is to demonstrate order of accuracy using Manufactured Solutions
 - This numerical benchmark allows an easier path to code verification
- Errors that occur for this simple 2D case are expected to be (much) larger for the more complex 3D cases
- Code verification should be a prerequisite for application of a code to analysis, model validation, etc.

Thanks go to:

- Chris Rumsey of NASA Langley for helping with formatting for data files
- Ed Tinoco for doing the initial screening of the Case 1 data
- All of the DPW-6 participants

Extra Slides

Effects of order of accuracy of turbulence models

- TBD
- TBD

To Be Updated

Pressure distributions:

- TBD
- TBD

To Be Updated

Skin friction distributions:

- TBD
- TBD

To Be Updated

Order of accuracy plots for SA models