DLR Results of the Sixth AIAA Computational Fluid Dynamics Drag Prediction Workshop

Stefan Keye, Vamshi Togiti, Olaf Brodersen

Institute for Aerodynamics and Flow Technology
German Aerospace Center (DLR)
Braunschweig, Germany

Contents

- Introduction
- Case 2 CRM Nacelle-Pylon Drag Increment
- Case 3 CRM WB Static Aero-Elastic Effect
- Side-of-Body Flow Separation
- Case 5 CRM WB Coupled Aero-Structural Simulation
- Conclusions

Introduction

- Computational Grids -

Name	WB		WBNP		Asa / Fire 7
	GG	SOLAR	GG	SOLAR	∆y ₁ / [in]
Tiny (T)	~20	7.15	25-30	11.8	0.001478
Coarse (C)	~30	14.1	40-45	23.2	0.001285
Medium (M)	~45	26.8	60-70	44.9	0.001118
Fine (F)	~70	39.7	85-100	81.1	0.000972
Extra Fine (X)	~100	×	130-150	×	0.000845
Ultra Fine (U)	~150	×	190-225	×	0.000735

• Started Grid Generation from Fine (F) Level.

Grid Size Factor: ~1.9×

- Derived coarser Grids through scaling of Sources, Factor $1/1.5^{1/3} = 0.873...$
- Generated Meshes compliant to Gridding Guidelines, two Exceptions:
 - Wing & Nacelle TE Base >> 8 Cells reduced (2 Cells inboard, 7 Cells outboard).
 - Wing spanwise Spacing increased from < 0.1%×Semi-Span at Root/Engine to ~0.34%.

Introduction

- Test Cases, Grids & Turbulence Models -

Config.	Grid	Case 2	Case 3	Case 5	
WB	Т	SA-neg, RSM-ω	-	1	
	С	SA-neg, RSM-ω	-	-	
	М	SA-neg, RSM-ω	SA-neg, RSM-ω	SA-neg	
	F	SA-neg, RSM-ω			
WBNP	Т	SA-neg, RSM-ω			
	С	SA-neg, RSM-ω	-	-	
	М	SA-neg, RSM-ω			
	F	SA-neg, RSM-ω			

• Slow Convergence with RSM- ω on fine Grids, not finished yet.

Introduction

- Flow Solver TAU -

- Finite-Volume
- Node-centered
- LU-SGS Time Integration
- 4w Multigrid Cycle
- Steady RANS
- Central spatial Discretization Scheme
- TAU Release 2015.2.0 with new Matrix Dissipation Formulation
- Turbulence Models:
 - Negative Spalart-Allmaras One-Equation Model (SA-neg), 2012
 - SSG/LRR-omega Full Reynolds Stress Model (RSM-ω), 2012

Case 2 - CRM Nacelle-Pylon Drag Increment

CFD Computations on all Grids fall within the specified Accuracy of $C_L = 0.5 + /-0.0001$.

Case 2 - CRM Nacelle-Pylon Drag Increment

Case 2 - CRM Nacelle-Pylon Drag Increment

Case 3 - CRM WB Static Aero-Elastic Effect

Case 3 - CRM WB Static Aero-Elastic Effect

Side-of-Body Flow Separation

- Overview -

- Predicted by linear Eddy Viscosity Models.
- Size reduced when taking into Account nonisotropic turbulent normal Stresses.
- Not found with k-ω or RSM Models.
- Size depends on:
 - numerical Dissipation,
 - Angle of Attack,
 - · Grid Density,
 - •

Side-of-Body Flow Separation

- Variation with Grid Size ...

Separation Size increases for finer Meshes.

Side-of-Body Flow Separation

- Variation with Grid Size and Angle of Attack -

Separation Size increases for finer Meshes.

Separation Size increases with Angle of Attack.

Case 5 - CRM WB Coupled Aero-Structural Simulation

Case 5 - CRM WB Coupled Aero-Structural Simulation

	α / [deg]	CL	C _D	$C_{D,p}$	$C_{D,f}$	C _{My}
Case 2	2.3753	0.50003	0.02570	0.01420	0.01150	-0.1008
FSI	2.4034	0.50001	0.02604	0.01457	0.01148	-0.1019

Conclusions

- Family of four SOLAR Grids generated on WB and WBNP Configurations (Tiny to Fine).
- Grid Sizes smaller than required by Gridding Guidelines, Size Factor larger.
- CFD Data for two Turbulence Models (SA-neg, RSM-ω) available.
- Differences between Grid Sizes and Turbulence Models very small.
- Deviations in Drag Increment between CFD and NTF Test Data below 2 drag counts.
- Deviations in Shock Location between SA-neg and RSM-ω increase with Angle of Attack.
- SoB Separation Size increases with both Grid Size and Angle of Attack.
- Good Agreement between coupled Simulation and CFD on pre-deformed Geometry.

