6th Drag Prediction Workshop

VZLU/FOI joint contribution using the Edge solver by

Aleš Prachař¹⁾, Peter Eliasson²⁾, Petr Vrchota¹⁾, Shia-Hui Peng²⁾

1) VZLU, Aerospace Research and Test Establishment (CZE)
2) FOI, Swedish Defence Research Agency

Overview

- Description of Team and Edge solver
- ☐ Calculations with Edge solver
 - Solver settings
 - > Turbulence models
- ☐ Case 1: 2D Verification Study (NACA0012)
 - Common structured grids
- ☐ Case 2: Grid convergence studies
 - Common unstructured grids (NASA GeoLab, Rev00), deflection at 2.75°
 - ➤ All levels (Tiny → Ultra), both configurations (WB, WBNP)
- ☐ Case 3: Incidence sweep
 - ➤ AoA's 2.5° 4.0° as specified, deformed grids
 - Common Medium grid (NASA GeoLab, Rev00)
- Conclusion

Description of Team and flow solver

- □ VZLU
 - Czech Aerospace Research and Test Establishment, founded 1922
 - Group of approx 10 people involved in CFD (Aerodynamics dept.)
 - New to DPW
- ☐ FOI
 - Swedish Research and Defence Agency
 - Support to Swedish industry with CFD and expertise (e.g., Saab)
 - ➤ Active in DPW's since DPW-2 (2003)
- ☐ Edge
 - CFD solver for unstructured grids
 - Developed at FOI, shared among collaborative partners (incl. VZLU)

Edge, setting

- ☐ Edge
 - Finite volume, node-based, dual grid
 - Agglomeration multi-grid, near wall semi coarsening 1:4
 - Line-implicit/explicit RK time stepping
 - Weak boundary conditions for all variables everywhere
- Settings
 - > 3-4 grid levels, W-cycles, CFL 1.00-1.25 and 3 RK stages
 - Central scheme with artificial dissipation (JST) for mean flow
 - upwind for turbulence
 - Full NS, compact discretization of normal derivatives
- □ Turbulence modeling
 - > SA, standard model (1992)
 - > EARSM, Wallin & Johansson (2000), ω-equation by Hellsten (2005)

Computing platform and time

- □ Various resources
 - > FOI and VZLU in-house clusters, external cluster
 - Difficult to compare wall clock time
- Medium grid (Case 3, VZLU cluster)
 - Computed on 48 cores
 - About 36 h wall clock time per case
 - > By experience: Intel Xeon cores faster (as much as 3x)
- ☐ Grid convergence study
 - ➤ Computed on 48-256 cores
 - Steady state computations
 - ➤ Search for AoA (C_L=0.5) / 3-4 automatic adjustments

Case 1: NACA0012 verification study

- ☐ Common (Family II) grid
 - > 7 grid levels, number of points doubles in each direction (x 4)
 - > C-type, quadrilaterals, stretched elements aligned with x-axis
 - Grid not aligned with the wake
- □ Flow conditions
 - \rightarrow M = 0.15; Re = 6 million; AoA = 10°
- Solver setting and flow solution
 - Steady state stabilization
 - Line-implicit time integration
 - Slow convergence
 - > SA, EARSM turbulence models
 - Similar grid convergence history
 - > Slightly different values

Case 1: NACA0012 details

- ☐ Grid assessment (1-fine, 7-coarse)
 - No wall functions used in Edge
 - > y+ sufficient from level 5 on (y+>1 only at LE)
 - > y+ ~ 0.05 for level 2 (EARSM case displayed)
- □ Pressure distribution (Cp), skin friction (Cf,x)
 - Good agreement with reference TAU solution
 - Lower negative pressure peak for EARSM

Case 1: Forces and Moments

- ☐ SA turbulence model
 - Converged values comparable to reference data
 - > TAU, FUN3D, CFL3D (website)
- ☐ EARSM
 - Total values differ from SA
 - Lower for coarse, higher for fine grids
 - ΔCL ≈2lc, ΔCD ≈10dc
 - > Similar path
 - Grid convergence achieved

1.095

Case 2: Grid convergence studies

- Wing-Body (WB) and Wing-Body-Nacelle-Pylon (WBNP)
 - Common unstructured grids (NASA GeoLab, Rev00), deflection at 2.75°
 - ➤ All levels (Tiny → Ultra), both configurations (WB, WBNP)
 - Converted from .ugrid → cgns (cgns library program)
 - Converted from cgns → Edge internal binary format (in-house program)
 - WBNP Ultra problems with conversion to cgns, size of data
 - Preprocessing issues with size of integer (2^31≈2.15e9)

	Wing-Body		Wing-Body-Nacelle-Pylon	
Grid	Total # nodes	Wall nodes	Total # nodes	Wall nodes
Tiny	20×10^6	5.28×10^{5}	28×10^{6}	6.06×10^{5}
Coarse	30×10^6	6.92×10^5	41×10^{6}	7.94×10^{5}
Medium	44×10^6	9.09×10^{5}	61×10^{6}	1.04×10^{6}
Fine	66×10^{6}	1.19×10^{6}	91×10^{6}	1.37×10^{6}
eXtra	101×10^6	1.56×10^6	138×10^{6}	1.79×10^{6}
Ultra	151×10^6	2.05×10^6	209×10^{6}	2.35×10^6

Case 2: Integral values

- ☐ SA and EARSM, WB and WBNP
 - \triangleright \triangle CD < 5 dc between grids for each turb. model
 - Each turb. model different monotonic behaviour (CD)
 - SA: large variation of AoA on fine grids
 - EARSM: less grid sensitive (AoA, CM)

Case 2: Skin friction and Cp

Case 2: Cp at cuts, turbulence models

- ☐ Small differences between models (SA, EARSM)
 - Differences in the outer wing region
 - More visible for fine grids (Ultra)

Case 2: Cp at cuts, grid refinement

- ☐ Comparison of Tiny and Ultra fine grids (WB)
- Some differences at outer wing region
 - More visible with SA model
 - Similar behaviour also for WBNP

Case 2: Skin friction at cuts

- Differences in Cf,x
 - > Higher for finer grids
 - Consistent with integral values (viscous drag increases)
 - > Higher for SA model
 - Consistent with integral values

Case 3: CRM WB Static Aero-Elastic Effect

- Medium grids with aero-elastic deflections according to ETW measurement
 - Wing bend
 - Visible Figure
 - Wing twist (lower AoA at wing tip)
 - Major Influence to the flowfield
- □ Flow conditions
 - AoA 2.5° to 4° (step 0.25°)
 - \rightarrow M = 0.85; Re = 5 million
 - SA and EARSM turbulence models
 - Otherwise identical solver setting
 - Also with Case 2
- CFD solution
 - Steady state achieved
 - Converges within 3000-4000 MG cycles

Case 3: Integral values

- ☐ SA vs. EARSM
 - ➤ ΔCL ≈ 1-1.5 lc, slightly increasing with AoA
 - \rightarrow Δ CD < 6 dc
 - Compared with rigid and elastic computation
 - > DLR grid from DPW-4, rigid and elastic wing
 - Method AIAA 2015-3153 (HTP)
 - \rightarrow Δ CM < 0.01, increasing with AoA

Case 3: Skin friction and Cp, SA

- Shock grows in strength as alpha increases
 - Moves upstream
- □ Trailing edge separation with increasing alpha
 - > Downstream the shock wave
 - Mid span

Case 3: Cp and Skin friction at cuts, $\alpha = 2.5^{\circ}$

- ☐ Small differences between models (SA, EARSM)
 - > Differences in shock location, slightly upstream for SA
 - Cf,x higher for SA
 - Consistent with higher viscous drag for SA model
 - Except after the shock

Case 3: Cp and Skin friction at cuts, α =3.5°

Case 3: Spanwise distributions

- □ Sectional lift Influenced by the separation
 - Detected as Cf,x < 0, measured from TE</p>
 - Mid span
- ☐ EARSM: More compact region and lift slightly less influenced

Summary and conslusion

- 2D NACA0012 Case
 - Slow convergence
 - SA results comparable with reference codes
 - > EARSM slightly different values, grid convergence achieved
- □ Grid convergence
 - Good steady state convergence
 - SA: larger variation of AoA to match CL=0.5
 - EARSM: smaller differences between grid levels
- Alpha sweeps
 - Turbulence models
 - Increasing difference as incidence is increased (CL, CM)
 - > Difference in shock locations, wing tip region
 - > TE separation stronger for SA model
 - Consistent with elastic wing computation

