

Boeing Unstructured Grid Results for Drag Prediction Workshop VI

AIAA Aviation Conference
June 15, 2016

Deric Babcock, Todd Michal, Dmitry Kamenetskiy, and Mori Mani

Boeing Unstructured Grid DPW VI Study Summary

BCFD (Boeing CFD)

- 2nd order cell centered finite volume discretization
- SA-RC turbulence model (also ran SA-RC-QCR, SST)

GGNS (Generalized Geometry Navier-Stokes)

- 2nd order node centered SUPG finite-element discretization
- SA-RC turbulence model
- Strong solver machine precision residual convergence

Case	Grids	Geometry	Flow Solver	Turbulence
1	Family II NASA TMR, adapted	NACA 0012	BCFD, GGNS (adapted)	SA
2A	Boeing - 7 levels	CRM WB	BCFD, GGNS	SARC, SARC- QCR, SST
2B	Boeing - 7 levels	CRM WBNP	BCFD	SARC
3	Boeing Med Grid (level 3) One for each AE deformation	CRM WB (7 deformed)	BCFD	SARC
4	Adapted	CRM WB, WBNP	BCFD, GGNS	SARC

Boeing Custom Grids

Toolset: MADCAP*/AFLR**

Process

- Utilized STEP geometry files and followed DPW VI sizing guidelines
- Created mesh sizing template for WBNP case
- Global scaling applied with template to generate 7 grid levels
- Removed Nacelle/Plyon and filled hole in grid for WB cases
- Aeroelastic grids generated on 7 geometry models (same sizing field)

Mixed Element Grid Sizes (converted to tets for GGNS)

- * Modular Aerodynamic Computational Analysis Process Boeing unstructured grid process
- ** Advancing Front with Local Reconnection Developed by D. Marcum, Mississippi State University, modified by Boeing

CASE 2 – Grid Convergence Study WB and WBNP Drag Increment at Constant CL=0.5

- CASE2A (WB) BCFD (Grids 1-7) and GGNS (Grids 2-6)
- CASE2B (WBNP) BCFD (Grids 1-7), no GGNS results
- 0.5 to 2 count drag rise observed with Grid 6 in BCFD and GGNS results
- Removing grid 6, BCFD and GGNS extrapolated drag very similar

BCFD Investigation of Drag Rise on 6th Grid

BCFD/GGNS Comparison - Grid Level 6

CASE 3 – Aeroelastic Deformation Study WBNP

- Ran on medium grid level (~50M cells) for all 7 angles of attack
- SA-RC turbulence model
- Solutions above AoA=3.0° initially attracted to unstable high-lift solution and then converge on lower-lift solution
- Inboard separation introduces non-linear lift curve at AoA=3.25°

Adaptive Grid Generation

EPIC (Edge Primitive Insertion Collapse) Adaptive Grid Tool

- Utilizes edge based operators to coarsen/refine surface and volume mesh to match a target metric field
- Adaptation performed on tetrahedral mesh with optional post BL prismatic grid insertion (normal spacing based on solver estimate of y+)
- Sizing metric derived from Mach Hessian or Entropy Adjoint error estimate

Adaptation Process

CASE 4 – Adapted Grid Study

- WB and WBNP configurations with GGNS and BCFD flow solvers
- Initial grid (559K cells, 205K nodes)
- Adapted on tetrahedral grid with BL grid insertion (prisms BCFD, tets GGNS) - BL grid not fully adapted
- Mach Hessian and Entropy adjoint error indicators
- Multiple runs to investigate impact of initial grid size/type, BL mesh, adapt growth rate, error estimate/metric choices

Adapted Grid Convergence Rate

- BCFD (Mach) convergence comparable to fixed grid
- GGNS (Mach) better than fixed grid
- BCFD (Entropy) improves rate

GGNS/EPIC Final Solution and Grid

CASE 4 — Adapted Grid Study Adapted Grid Comparison — WB Configuration

- BCFD adapted grid drag consistent with fixed-grid
- GGNS adapted grid drag lower than fixed-grid estimate
 - Problems matching CL resulted to running with fixed alpha on larger grids
- Adapted grid pressure distributions generally consistent
 - Adapted results: better resolution of shocks, lower surface near trailing edge
 - Large difference in adapted results near wing outboard lambda shock

Conclusion/Summary

Fixed Grid Results

- Seemingly benign variations in the grid topology or stretching rate can introduce drag variations comparable in magnitude to the drag increment between grid levels.
- Complicates use of Richardson extrapolation to predict grid converged drag

Adapted Grid Results

- Drag predictions generally comparable to fixed-grid
- Choices in adaptation strategy (*i.e.* error-estimate) have large impact on grid convergence rate
- Demonstrated grid convergence to within ½ to 2 counts of drag
- Absolute grid converged results will require very large grids, or outputbased error-estimates