Metacomp Technologies

6th AIAA CFD Drag Prediction Workshop Summary of results from the CFD++ software suite

Brian A. Edge

Metacomp Technologies, Inc.

June 2016

Corresponding Participant

Name: Brian Edge

Email: edge@metacomptech.com

Phone: (818) 735-4880

Address: Metacomp Technologies, Inc.

28632-B Roadside Drive, Suite 255

Agoura Hills, CA 91301

Metacomp Participation

- ▶ Tasks Performed:
 - 1, 2, 3, and 5
- ► Software used:

CFD++ Software Suite: CFD++, CSM++, MetaFSI, MIME

- ► CFD++ Basic Algorithms:
 - Unified unstructured higher-order TVD interpolation convection scheme
 - ► Cell- and vertex-based polynomial reconstruction
 - ► Positivity-preserving Riemann solver-based flux computation
 - Advanced algebraic multi-grid agglomeration linear solver

Task 1: Verification Study

Conditions: Ma=0.15, Re=6 million, α =10 degrees, farfield ν_t/ν =0.2104

The dashed lines represents the infinitely-refined results obtained from 3 codes (FUN3D, CFL3D, and TAU).

Task 2: Drag Increment Study

Task 2: Drag Increment

- ► Two grids:
 - "unstructured_NASA_GeoLab.REV00"
 - ▶ "Boeing_Babcock_Unstructured_CC.REV00" grid families.
- ► Four turbulence models:
 - ► Linear Eddy Viscosity
 - Spalart-Allmaras
 - ▶ SST
 - ► Non-Linear Eddy Viscosity
 - ► Hellsten
 - ► SA-RC-QCR

Task 2: Grid Comparison

Number of cells

		unstructured_NASA_GeoLab.REV00		Boeing_Babcock_Unstructured_CC.REV00	
Grid	Grid Level	WB	WBNP	WB	WBNP
TINY	1	83,578,942	120,909,566	20,657,615	27,015,892
COARSE	2	122,816,245	178,924,829	26,271,819	35,271,269
MEDIUM	3	181,953,555	266,818,466	33,683,206	45,687,005
FINE	4	271,262,930	399,877,018	43,126,748	60,174,840
XTRAFINE	5	404,235,547	597,491,792	56,413,328	79,548,552
ULTRAFINE	6	606,531,721	901,459,751	71,169,688	101,639,992

Task 2: Grid Comparison (Symmetry Plane)

Task 2: Grid Comparison (Surface and Prism Layers)

unstructured_NASA_GeoLab.REV00 Grid Level 1 (TINY)

Task 2: Grid Comparison

Task 2: Grid Comparison

Angle-of-Attack at $C_L=0.5\pm0.0001$. Results were obtained using the Spalart-Allmaras turbulence model.

Task 2: Grid Computational Resource Needs

System Specs:

192 Intel(R) Xeon(R) E5-2620 v3 CPUs running at 2.40GHz, InfiniBand interconnect 4X FDR 56GB/sec.

WB Geometry
"Boeing_Babcock_Unstructured_CC.REV00"

Grid	Grid Level	Run Time [h]	RAM [GB]
TINY	1	1.5	87
COARSE	2	1.8	108
MEDIUM	3	2.0	135
FINE	4	2.7	170
XTRAFINE	5	3.2	218
ULTRAFINE	6	3.8	272

For Comparison:

unstructured_NASA_GeoLab.REV00 (WB) - MEDIUM: 22.4 [h]

Task 2: Grid Comparison

Our decision: use the "Boeing_Babcock_Unstructured_CC.REV00" grid family for remaining studies.

- ► It provides "similar" results to the larger unstructured NASA grid
- ▶ It has fewer cells and requires less CPU resource

Task 2: Turbulence Model Comparison

Angle-of-Attack (α) versus grid refinement level.

Task 2: Turbulence Model Comparison

*C*_D versus grid refinement level.

Task 2: Turbulence Model Comparison: C_p Curves

Task 3: Static Aero-Elastic Effect

Task 3: Results versus angle-of-attack (α)

Task 3: Isosurface of Separated Flow with different Turbulence Models ($\alpha=3.75$)

Task 5: Coupled Aero-Structural Simulation

Task 5: Summary of effort

The CFD++ Software suite was used to predict aero-elastic deformation of the test model.

- ► FE model of the NTF wind tunnel geometry was obtained from CRM website
- ► Reduced the FE model to the wing only
- ► Simulated ETW run 182 test conditions (Ma=0.85, Re=5 million)

Full Model
4.0E6 Degrees of Freedom

Reduced Model
1.7E6 Degrees of Freedom

Task 5: Summary of effort

Differences from previous tasks:

- ► Simulation at model scale
- ► Mesh created with MIME
- ▶ Wall-distance-free Realizable $k \epsilon$ model
- ► C_L-driver combined with coupled aero-elastic analysis

Task 5: Software Suite for Aero-elastic analysis

Aero-elastic calculations used four software components:

1. MIME

unstructured mesh generation

2. CFD++

general unstructured finite volume-based flow solver

3. CSM++

finite element-based structural solver that can be used to perform static, transient, and eigen-mode analyses.

4. MetaFSI

efficiently transfers loads and morphs the CFD++ grid to follow the CSM++ deformations.

Task 5: Aero-elastic analysis process

Task 5: Resulting deformation

Task 5: Resulting deformation closely matches AE2.75 CAD model

Computed bending is within 5% of the AE2.75 value

The offset at full scale is 1.18 inch

Closing Summary

- ► Task 1: Validation
 - ► CFD++ results show excellent agreement.
- ► Tasks 2 and 3:
 - CFD++ effectively handled all of the grids from the "unstructured_NASA_GeoLab.REV00" and the "Boeing_Babcock_Unstructured_CC.REV00" grid families.
 - Results were shown for a sample of the turbulence models available within CFD++.
- ► Task 5: Aero-elastic deformation
 - ► Demonstrated coupled aero-elastic analysis with CFD++ in co-simulation with CSM++ and MetaFSI.
 - Computed deformations closely matched experiment.

Thank You!

Name: Brian Edge

 ${\sf Email:} \quad {\sf edge@metacomptech.com}$

Phone: (818) 735-4880

Address: Metacomp Technologies, Inc.

28632-B Roadside Drive, Suite 255

Agoura Hills, CA 91301