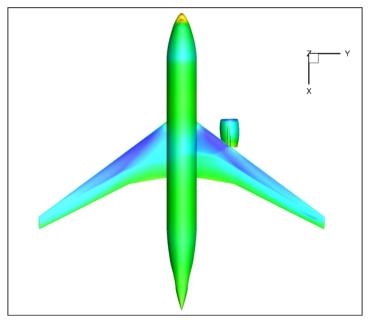


June, 2016 in Washington, Drag Counts

CFD Investigations on the Wing-Body-Nacelle-Pylon DPW-6 Configuration using the elsA Solver and the Far-Field Approach

David HUE, Quentin CHANZY

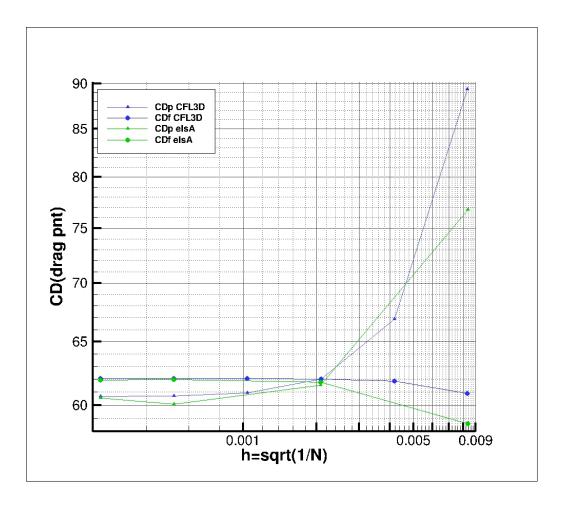

Engineers, Civil Aircraft Unit, Applied Aerodynamics Department, ONERA

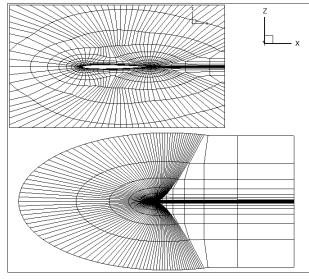
return on innovation

Outline

- Test-Case 1 (NACA0012)
- > NASA-CRM WB and WBNP geometries
- Structured Overset Grids (Boeing)
- NS solver (elsA) and Far-Field software (ffd72)
- Test-Case 2 (CRM WB + WBNP)
- Test-Case 3 (CRM WB)
- Conclusions

WB versus WBNP in cruise flight (pressure distribution)



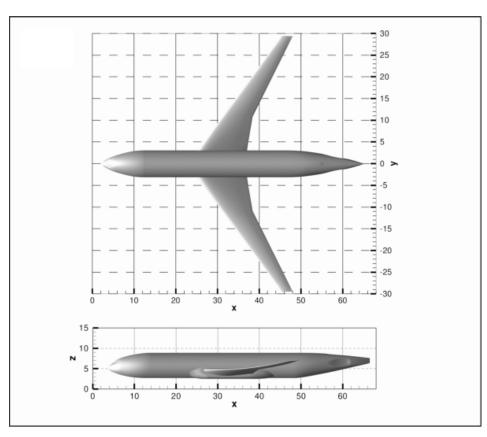

Test-Case 1 2D NACA0012 Airfoil

Verification Study

$NACA0012 \ airfoil - Ma = 0.15, AoA = 10^{\circ}, Re_{c} = 6.10^{\circ}$

ONERA-elsA solver with SA model without vortex BC Grid Family II (3D)

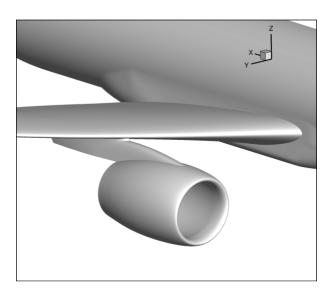
Very good agreement observed for both pressure and friction components

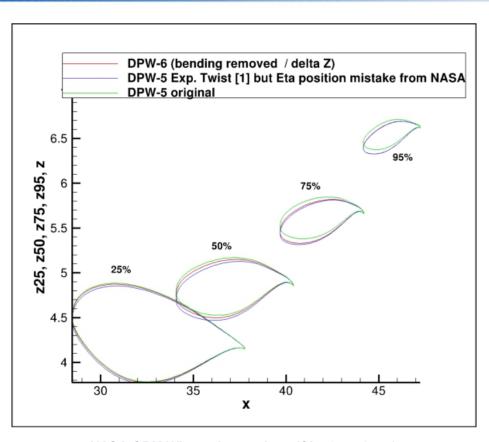

Test-Cases 2 & 3 NASA-CRM WB and WBNP Configurations

NASA-CRM WB and WBNP geometries

The CRM in a few figures:

- Used in DPW 4, 5, and 6
- Design Mach number of 0.85
- Conventional low-wing configuration
- > Representative of today's aircraft
- Aerodynamic chord = 7.00532 m
- > Reference surface = 383.68956 m²
- Semispan = 29.38145 m
- Aspect ratio = 9.0
- > Moment reference center:
 - > Xref = 33.67786 m
 - > Yref = 0.0 m
 - > Zref = 4.51993 m


NASA-CRM Wing-Body geometry in meters


NASA-CRM WB and WBNP geometries

What is specific in DPW-6:

- Original DPW-5 wings have been deformed to better match the experimental twist and bending for each AoA (measurements from NTF, JAXA, ETW)
- The WBNP configuration allows NP drag increment assessment (Through Flow Nacelle)

Nacelle-Pylon Installation

NASA-CRM Wing twist versions (CL= 0,5 - 2p75)

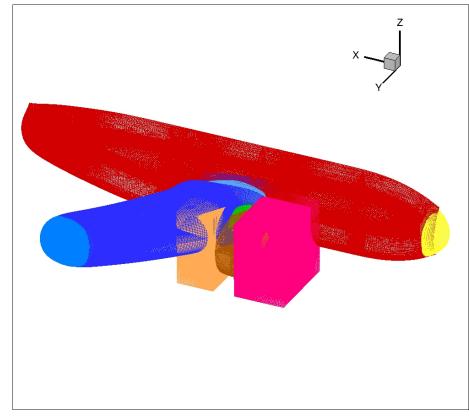
Structured Overset Grids

Overset Grids Boeing Serrano REV00:

- Overset grids for WB and WBNP configurations
- > 8 Overset bases for the WB ('body','wbcol','boxin'...) and 25 for the WBNP
- 6 grid levels for each configuration + 6 WB grids at different AoA from 2,50 to 4,00°
- ➤ WB and WBNP grid families exhibit similar grid-size-ratios of about 11 (versus 216 in DPW-5 when coarsest grids were really much coarser...)
- Plot3d files converted into CGNS format with in-house tools.
- The Overset data iblank from Boeing was not used and the blanking and overlapping processes have been carried out with the ONERA software Cassiopee [2]: Pretty challenging for the WBNP configuration

N°	Level	TotPts WB / WBNP (in millions)	Wing deformation
1	Tiny	7.4 / <mark>11.9</mark>	2p75
2	Coarse	14.4 / 23.0	2p75
3	Medium	24.7 / <mark>39.5</mark>	2p75
4	Fine	39.1 / <mark>62.6</mark>	2p75
5	XFine	58.2 / <mark>93.2</mark>	2p75
6	UFine	82.8 / <mark>132.4</mark>	2p75

Level	Wing deformation	
Medium	2p50	
Medium	3p00	
Medium	3p25	
Medium	3p50	
Medium	3p75	
Medium	4p00	

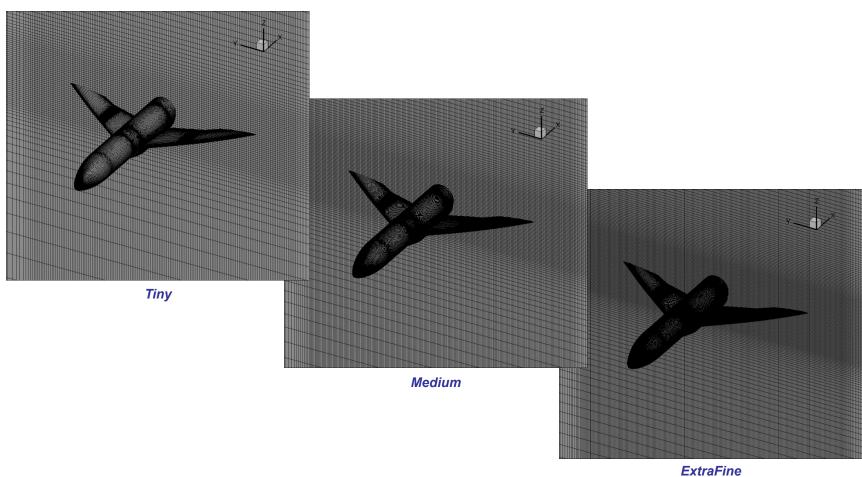

WB Overset Grids for Test-Case 3

Grids not used for convergence or ressources issues

Structured Overset Grids

> Illustration of the blanking and overlapping processes:

25 Overset Bases for the WBNP Boeing Grids


ONERA blanking bodies (offsets from walls)

ONERA Overset techniques described in [3]

25 bases from Boeing reduced to 10 6 blanking bodies (to avoid grid cells inside physical bodies)

Structured Overset Grids

Illustration of the WB grid refinement levels:

NS solver: elsA

Software for simulations in Aerodynamics

elsA [4]:

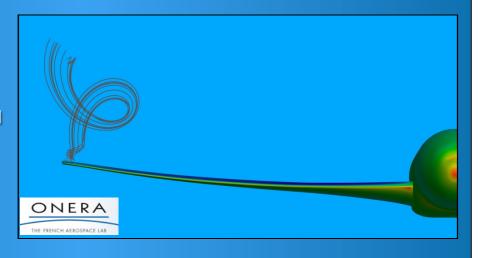
Structured solver - RANS / URANS / ZDES computations

Cell-centered finite volume on multiblock / overset / hybrid grids

Time integration: backward-Euler scheme with LU-SSOR relaxation

Spatial discretization: central Jameson scheme

Multigrid techniques


Fully turbulent computations

Spalart-Allmaras turbulence model

QCR-2000 correction when specified

SGI ICE 8200 (48 to 256 proc.)

≈ 10 hours / 1 full calculation

Far-Field software: ffd72

Post-processing software using solver solutions

Far-Field Drag extraction ffd72 [5]:

CDnf = CDp + CDf

CDff = CDv + CDw + CDi

CDv = CDf + CDvp

CDsp = CDnf - CDff

: pressure drag

CDf: friction drag

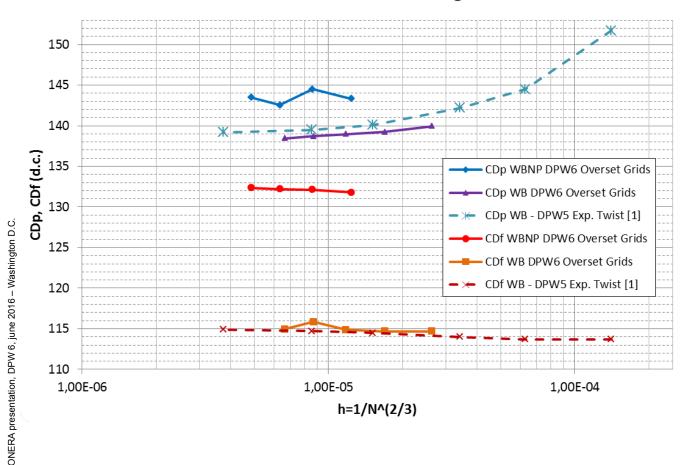
CDvp: viscous pressure drag

CDv: viscous drag

CDw: wave drag

: lift-induced drag

CDsp: spurious / artificial drag



Test-Case 2 CRM Nacelle-Pylon Drag Increment

NASA-CRM - Ma = 0.85, CL = 0.5, $Re_{c} = 5.10^{6}$

WB and WBNP Grid Convergences

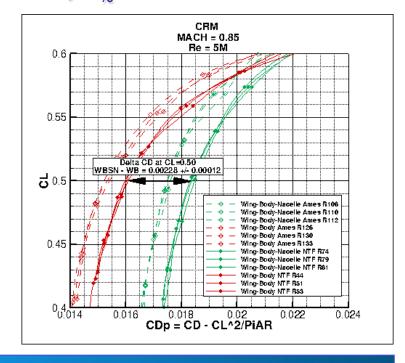
WB: drag value close to 253,5 counts in very good agreement with [1] (DPW5 MB Common Grids with Exp. Twist)

CD Pressure: 138,5 d.c – 55% of total drag

CD Friction: 115,0 d.c – 45% of total drag

WBNP: drag value close to 276 counts

CD Pressure: 143,5 d.c – 52% of total drag more variation in cv process probably due to more complex


CD Friction: 132,5 d.c – 48% of total drag

flow / Overset grid / interp.

NASA-CRM - Ma = 0.85, CL = 0.5, $Re_{c} = 5.10^{6}$

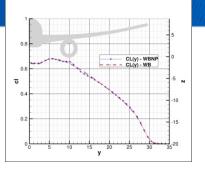
	WB med.	WBNP med.	Delta
Alpha	2,437	2,622	0,186
CL	0,500	0,500	0,00
CDnf	253,8	276,7	22,9
CDf	114,8	132,0	17,2
CDvp	42,0	47,2	5,2
CDv	156,9	179,3	22,4
CDw	5,4	5,8	0,5
CDi	91,7	91,1	-0,6
CDff	253,9	276,3	22,4
CDsp	-0,1	0,4	0,5
CM	-0,0958	-0,0915	0,004

ONERA Far-Field analysis of NP Increment

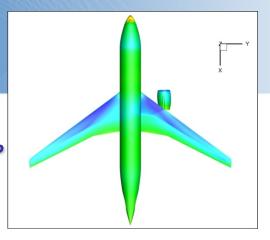
elsA-ffd72 NP increment: 22.4 d.c. +/- 1 d.c.

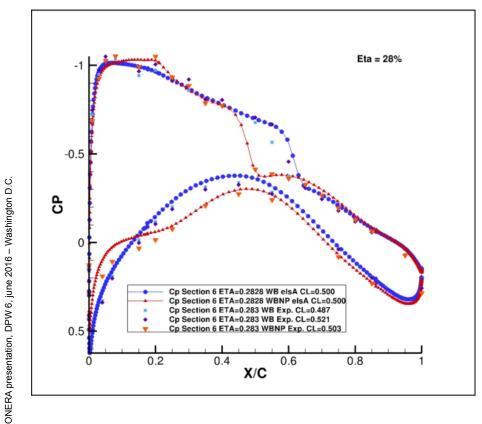
Exp. (NTF-Ames) NP increment: 22.8 d.c. +/-1.2 d.c. (data analysis by Ed Tinoco)

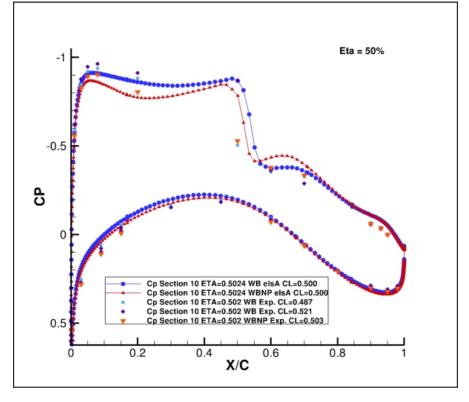
Very good CFD / WT agreement on Nacelle-Pylon Increment

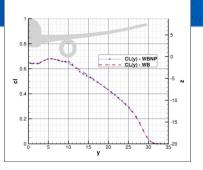

CDf: increase of about 17 drag counts - CDf represents 48% of WBNP drag

CDvp: increase of about 5 drag counts – CDvp represents 17% of WBNP drag

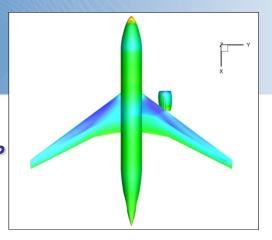

77% of NP drag increment due to friction and 23% due to viscous pressure

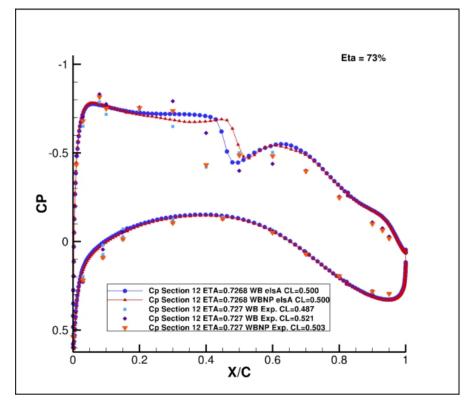

CDw: very limited impact – CDw represents only 2% of WBNP drag

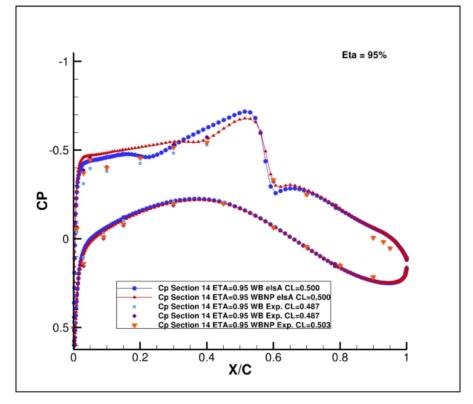

CDi: very limited variation – CDi represents 33% of WBNP drag



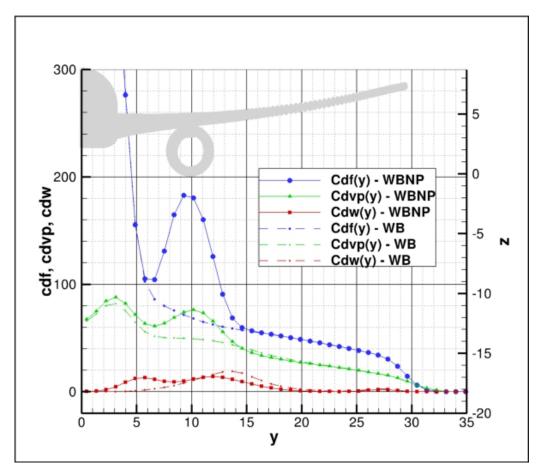
NASA-CRM - Ma = 0.85, CL = 0.5, $Re_{/c} = 5.10^6$ CFD and WT Cp distributions - WB versus WBNP





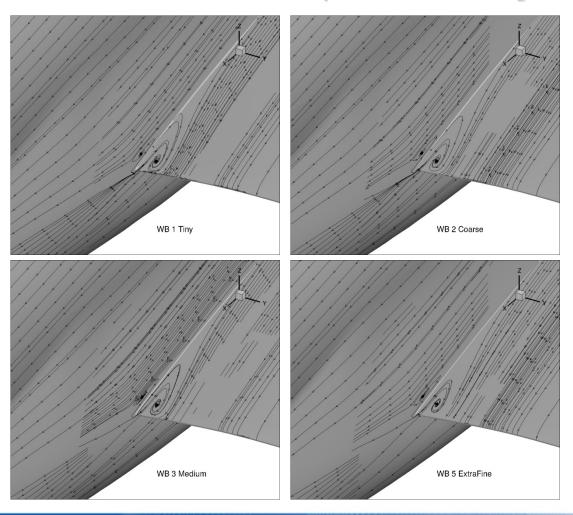


NASA-CRM - Ma = 0.85, CL = 0.5, $Re_{/c} = 5.10^6$ CFD and WT Cp distributions - WB versus WBNP



ONERA presentation, DPW 6, june 2016 - Washington D.C.

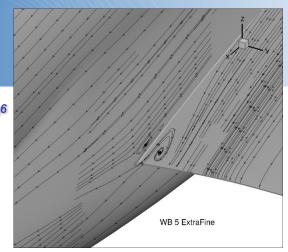
NASA-CRM - Ma = 0.85, CL = 0.5, $Re_{/c} = 5.10^6$ Far-Field Analyses

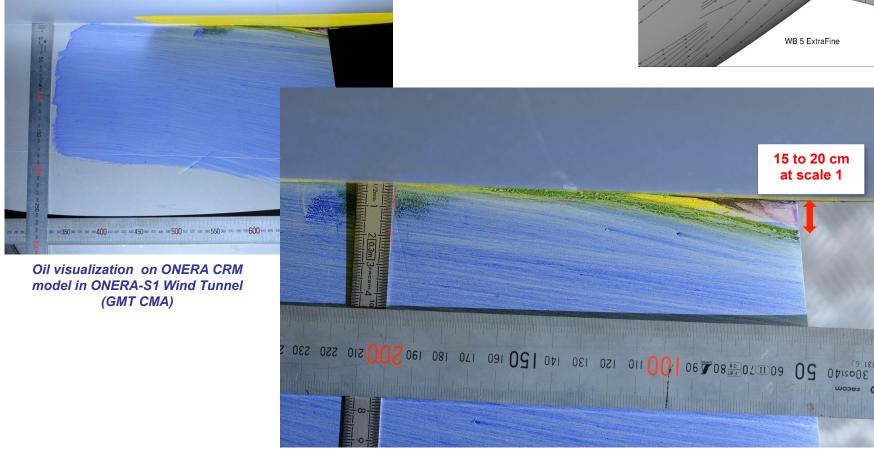


CDf, CDvp, and CDw spanwise productions WB versus WBNP

CRM Nacelle-Pylon Drag Increment

NASA-CRM – Ma = 0.85, CL = 0.5, Re_{/c}= 5.10^6 SOB separation on WB Configuration

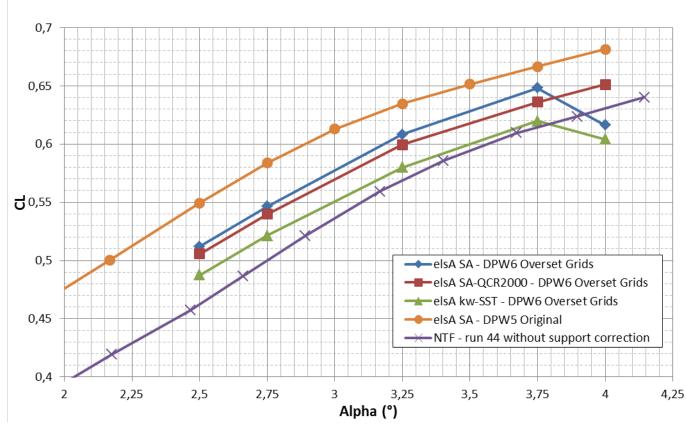



No significant influence of refinement
Size about 25cm (less than 1% of semispan)

CRM Nacelle-Pylon Drag Increment

NASA-CRM – Ma = 0.85, CL = 0.5, $Re_{/c}$ = 5.10⁶ SOB separation on WB Configuration

Publication to come [N1]



Test-Case 3 CRM WB Static Aero-Elastic Effect

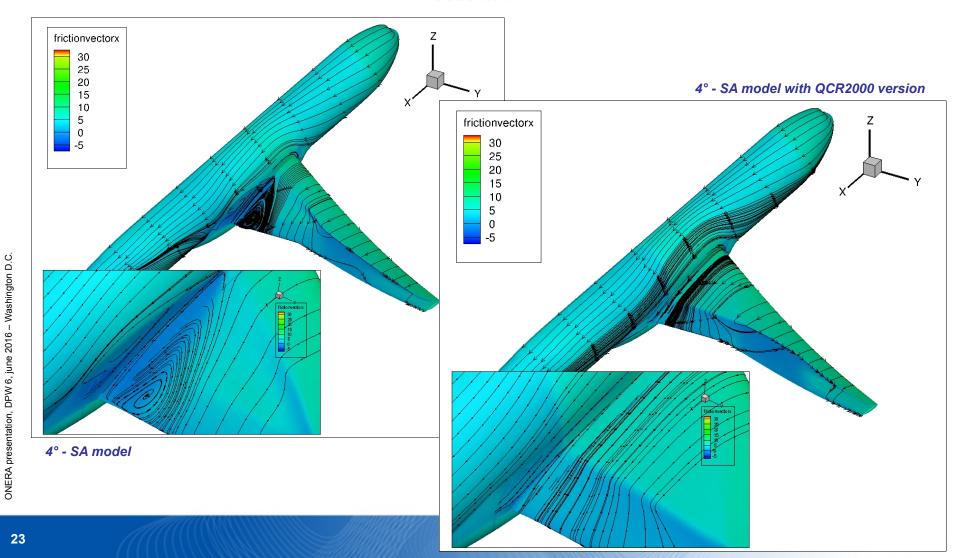
CRM WB Static Aero-Elastic Effect

NASA-CRM Wing-Body – Ma = 0.85, Re_{/c}= 5.10^6 – Medium Grid – Alpha sweep from 2.5 to 4° Wing deformation from Exp. at each AoA

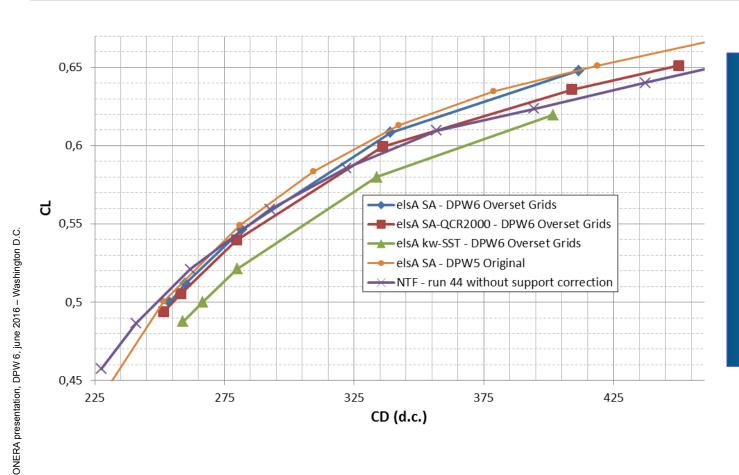
Better CFD / WT agreement achieved with the Exp. wing shapes

Non-negligible difference between SA and kw-SST models over whole polar

But SA and kw-SST models exhibit same CL drop at 4°


The Spalart QCR2000 version shows behavior closer to experiments

Quadratic Constitutive Relation, 2000 version SA-QCR2000 (from http://turbmodels.larc.nasa.gov/spalart.html): nonlinear model version of Spalart-Allmaras is described in: Spalart, P. R., "Strategies for Turbulence Modelling and Simulation," International Journal of Heat and Fluid Flow, Vol. 21, 2000, pp. 252-263. The model is computed the same as SA, but instead of the traditional linear Boussinesq relation, the following form for the turbulent stress is used: $\tau_{ij,QCR} = \tau_{ij} - C_{cr1} \left[O_{ik} \tau_{jk} + O_{jk} \tau_{ik} \right]$


CRM WB Static Aero-Elastic Effect

NASA-CRM Wing-Body – Ma = 0.85, Re_{/c}= 5.10^6 – Medium Grid – Alpha sweep from 2.5 to 4° Focus at 4°

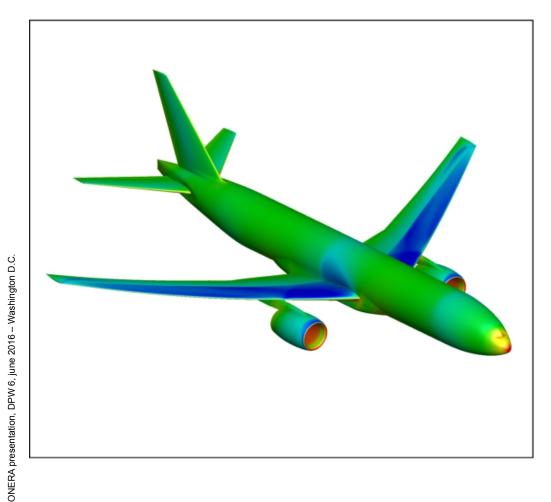
CRM WB Static Aero-Elastic Effect

NASA-CRM Wing-Body – Ma = 0.85, Re_{c} = 5.10⁶ – Medium Grid – Alpha sweep from 2.5 to 4° Wing deformation from Exp. at each AoA

Not Better CFD / WT agreement achieved with the Exp. wing shapes

Significant drag difference between SA and kw-SST models over whole polar

The Spalart QCR2000
version significantly
improves agreement with
experiments at high AoA
but very limited influence
at CL = 0.5



Complete Configuration

Complete Configuration

NASA-CRM complete but not trimmed – Ma = 0.85, CL = 0.5, Re_{c} = 5.10⁶

	WBNP med.	Complete	Delta
Alpha	2,622	2,700	0,078
CL	0,500	0,500	0,00
CDnf	276,7	306,8	30,1
CDf	132,0	152,9	20,9
CDvp	47,2	56,1	8,9
CDv	179,3	209,0	29,7
CDw	5,8	6,7	0,9
CDi	91,1	90,6	-0,5
CDff	276,3	306,3	30,0
CDsp	0,4	0,4	0,0
CM	-0,0915	-0,0575	0,034

Beoing Overset Grids for WBNP Configuration and ONERA Overset Grids for HTP + VTP [3]

VTP geometry proposed by ONERA
(available at
http://commonresearchmodel.larc.nasa.gov)
because needed in ONERA-S1 Wind Tunnel

HTP + VTP increment in agreement with [3]

Conclusions

Concerning Grid convergence studies:

- Good convergence behavior obtained with elsA / Cassiopee using the Boeing Overset family (low dissipation even on coarsest grids)
- Drag values obtained with DPW-6 grids in very satisfactory agreement with previous reliable references
- Nacelle Pylon Drag Increment in very good agreement with Exp. data

Concerning Alpha sweep:

- Better CFD / WT agreement achieved with the Exp. wing shapes and QCR.
- An article gathering at least all of the results presented here will be submitted to the Journal of Aircraft in the coming months [N2]

return on innovation

References and Publications to come

- [1] Hue, D., "Fifth Drag Prediction Workshop: ONERA Investigations with Experimental Wing Twist and Laminarity," Journal of Aircraft, vol.51(4), pp. 1311-1322, 2014
- [2] Péron, S., Benoit, C., Landier, S., and Raud, P., "Cassiopée: CFD Advanced Set of Services In an Open Python Environment," 12th Symposium on Overset Grid and Solution Technology, Atlanta, 2014
- [3] Hue, D., Péron, S., Wiart, L., Atinault, O., Gournay, E., Raud, P., Benoit, C., and Mayeur, J., "Validation of anear-body and off-body grid partitioning methodology for aircraft aerodynamic performance prediction," Computers & Fluids, Vol. 117, 2015, pp. 196-211
- [4] Cambier, L., Heib, S., and Plot, S., "The ONERA elsA CFD Software: Input from Research and Feedback from Industry," Mechanics and Industry, Vol. 15(3), pp. 159-174, 2013
- [5] Destarac, D., "Far-Field / Near-Field Drag Balance Applications of Drag Extraction in CFD", VKI Lecture Series 2003-02, von Karman Institute, Rhode-Saint-Genèse, Belgium, Nov. 3-7 2003
- [N1] Cartieri, A., Hue, D., Chanzy, Q., "Analysis of the first ONERA-S1 Wind Tunnel Test Campaign of the CRM Configuration"
- [N2] Hue, D., Chanzy, Q., Landier, S., "CFD Drag Prediction of the DPW-6 Aircraft Configuration using the ONERA Far-Field Approach"

