

OVERFLOW Analysis of the NASA Common Research Model Using WENO and MUSCL Schemes

Presented at the 6th AIAA CFD Drag Prediction Workshop Washington, D.C.

June 16, 2016

Dr. Jim Coder
Research Associate, Computational Mechanics

Geometry

Common Overset Grid System

 Generated by Boeing (Long Beach) and provided by DPW organizing committee

Objectives and Strategy

- Goal: Assess benefits of using higher-order convective fluxes for cruise drag prediction
- Solver: OVERFLOW 2.2l
 - Structured, overset solver developed by NASA
- Cases: 2 and 3
 - WB and WBNP grid convergence, nacelle-pylon drag increment
 - Alpha sweep with static aeroelastic deflections, buffet study

Objectives and Strategy

- 5th-order WENO vs. 3rd-order MUSCL with Roe fluxes
 - 2nd-order viscous fluxes for both
- ARC3D scalar pentadiagonal LHS for first 5000 iterations
 - Grid sequencing and multigrid for convergence acceleration
- Switch to SSOR left-hand side until convergence
 - No artificial dissipation (DIS2 = 0, DIS4 = 0)
 - No multigrid
- USURP force/moment integration
- OVERFLOW's C_L driver used to update AoA during solution

Objectives and Strategy

SSOR + multigrid did not lead to favorable results

Turbulence Modeling

- Spalart-Allmaras model with Spalart-Shur rotation/curvature correction and the quadratic constitutive relation ('SA-RC-QCR2000')
 - RC correction beneficial in tip region
 - QCR improves predictions in wing-body junctures (side-of-body separation) by introducing turbulence anisotropy
- Case are assumed a priori to be fully attached (or nearly so) with an attainable and meaningful steady RANS solution

Quadratic Constitutive Relation

Non-linear Reynolds-stress closure

$$au_{ij} = au_{ij}^{linear} - C_{nl1} \left[O_{ik} au_{jk}^{linear} + O_{jk} au_{ik}^{linear}
ight]$$

$$\tau_{ij}^{linear} = 2\mu_{t} \left[S_{ij} - \frac{1}{3} \frac{\partial u_{k}}{\partial x_{k}} S_{ij} \right] - \underbrace{\frac{2}{3} \rho k S_{ij}}_{omitted} \qquad O_{ij} = \underbrace{\frac{\Omega_{ij}}{\left(\frac{\partial u_{m}}{\partial x_{n}} \frac{\partial u_{m}}{\partial x_{n}} \right)}}_{omitted}$$

- Promotes 4:2:3 principal stress ratio in planar shear layers
 - Accepted value: $C_{nl1} = 0.3$ (used here)
 - 'True' values: $C_{nl1} = 0.358$ ($a_1 = 0.31$); $C_{nl1} = 0.370$ ($a_1 = 0.30$)

Case 2: CRM Nacelle-Pylon Drag Increment

Case 2: Drag Convergence

Case 2: ΔC_D Convergence

Case 2: Alpha and Pitching-Moment Convergences

Angle of Attack

Pitching-Moment Coefficient

Case 2: C_P Comparisons (Medium Grid)

Case 2: CRM-WBNP Surface Streamlines (Medium Grid)

Case 3: CRM-WB Static Aero-Elastic Effect

Strategy

- Same solver parameters as Case 2(a)
 - 3rd-order Roe vs. 5th-order WENO, SSOR LHS, no dissipation
- Restart from lower alphas
 - Converge $\alpha = 2.50^{\circ}$ first
 - Start α = 2.75° from α = 2.50° solution, etc.
- Run until force/moment convergence

Case 3: Force and Moment Comparisons

Observations and Conclusions

Observations and Conclusions

- Higher-order convective fluxes had no impact on formal order of accuracy
 - Two fringe layers (PEGASUS connectivity)
 - Viscous terms and grid metrics remain 2nd-order
 - SA convective terms are 1st order
- WENO and Roe solutions are not converging to the same continuum values
 - Similar convergence qualities, small (< 1 ct) offset in drag values
 - Requires further investigation

Observations and Conclusions

- WENO solutions showed oscillations around the shockwave
 - WENOM limiter used, perhaps not effective enough
 - Alternative may be to set DIS2 ≠ 0
- Lift and pitching-moment polar comparisons imply too much lift predicted outboard
 - Need to compare predicted and measured lift distributions
 - Sting not modeled
- SSOR solutions are slow
 - D3ADI showed promise for upwind RHS and DIS4 = 0

