OVERFLOW Analysis of the NASA Common Research Model Using WENO and MUSCL Schemes Presented at the 6th AIAA CFD Drag Prediction Workshop Washington, D.C. June 16, 2016 Dr. Jim Coder Research Associate, Computational Mechanics ## Geometry #### Common Overset Grid System Generated by Boeing (Long Beach) and provided by DPW organizing committee ### **Objectives and Strategy** - Goal: Assess benefits of using higher-order convective fluxes for cruise drag prediction - Solver: OVERFLOW 2.2l - Structured, overset solver developed by NASA - Cases: 2 and 3 - WB and WBNP grid convergence, nacelle-pylon drag increment - Alpha sweep with static aeroelastic deflections, buffet study ### **Objectives and Strategy** - 5th-order WENO vs. 3rd-order MUSCL with Roe fluxes - 2nd-order viscous fluxes for both - ARC3D scalar pentadiagonal LHS for first 5000 iterations - Grid sequencing and multigrid for convergence acceleration - Switch to SSOR left-hand side until convergence - No artificial dissipation (DIS2 = 0, DIS4 = 0) - No multigrid - USURP force/moment integration - OVERFLOW's C_L driver used to update AoA during solution ## **Objectives and Strategy** SSOR + multigrid did not lead to favorable results #### **Turbulence Modeling** - Spalart-Allmaras model with Spalart-Shur rotation/curvature correction and the quadratic constitutive relation ('SA-RC-QCR2000') - RC correction beneficial in tip region - QCR improves predictions in wing-body junctures (side-of-body separation) by introducing turbulence anisotropy - Case are assumed a priori to be fully attached (or nearly so) with an attainable and meaningful steady RANS solution #### **Quadratic Constitutive Relation** Non-linear Reynolds-stress closure $$au_{ij} = au_{ij}^{linear} - C_{nl1} \left[O_{ik} au_{jk}^{linear} + O_{jk} au_{ik}^{linear} ight]$$ $$\tau_{ij}^{linear} = 2\mu_{t} \left[S_{ij} - \frac{1}{3} \frac{\partial u_{k}}{\partial x_{k}} S_{ij} \right] - \underbrace{\frac{2}{3} \rho k S_{ij}}_{omitted} \qquad O_{ij} = \underbrace{\frac{\Omega_{ij}}{\left(\frac{\partial u_{m}}{\partial x_{n}} \frac{\partial u_{m}}{\partial x_{n}} \right)}}_{omitted}$$ - Promotes 4:2:3 principal stress ratio in planar shear layers - Accepted value: $C_{nl1} = 0.3$ (used here) - 'True' values: $C_{nl1} = 0.358$ ($a_1 = 0.31$); $C_{nl1} = 0.370$ ($a_1 = 0.30$) Case 2: CRM Nacelle-Pylon Drag Increment ## Case 2: Drag Convergence ## Case 2: ΔC_D Convergence ## Case 2: Alpha and Pitching-Moment Convergences **Angle of Attack** **Pitching-Moment Coefficient** # Case 2: C_P Comparisons (Medium Grid) ## Case 2: CRM-WBNP Surface Streamlines (Medium Grid) #### Case 3: CRM-WB Static Aero-Elastic Effect #### Strategy - Same solver parameters as Case 2(a) - 3rd-order Roe vs. 5th-order WENO, SSOR LHS, no dissipation - Restart from lower alphas - Converge $\alpha = 2.50^{\circ}$ first - Start α = 2.75° from α = 2.50° solution, etc. - Run until force/moment convergence ## Case 3: Force and Moment Comparisons #### **Observations and Conclusions** #### **Observations and Conclusions** - Higher-order convective fluxes had no impact on formal order of accuracy - Two fringe layers (PEGASUS connectivity) - Viscous terms and grid metrics remain 2nd-order - SA convective terms are 1st order - WENO and Roe solutions are not converging to the same continuum values - Similar convergence qualities, small (< 1 ct) offset in drag values - Requires further investigation #### **Observations and Conclusions** - WENO solutions showed oscillations around the shockwave - WENOM limiter used, perhaps not effective enough - Alternative may be to set DIS2 ≠ 0 - Lift and pitching-moment polar comparisons imply too much lift predicted outboard - Need to compare predicted and measured lift distributions - Sting not modeled - SSOR solutions are slow - D3ADI showed promise for upwind RHS and DIS4 = 0