

OVERFLOW Analysis of the NASA CRM WB and WBNP Aero-Elastic Configurations

Anthony J. Sclafani

Leonel Serrano

John C. Vassberg

Mark A. DeHaan

Boeing Commercial Airplanes

Southern California Design Center

Long Beach, California, USA

Thomas H. Pulliam

NASA Ames Research Center

Moffett Field, California, USA

6th AIAA CFD Drag Prediction Workshop Washington, D.C. 16-17 June 2016

Outline

- > Flow Solver and Computing Platform
- Overset Grid Summary and Cases Analyzed
- Convergence History
- Results
 - Case 1: Verification
 - Case 2: Nacelle/Pylon Drag Increment
 - Case 3: Wing/Body Drag Polar
 - Case 4: Grid Adaption
- > Conclusions

Flow Solver and Computing Platform

OVERFLOW Version 2.2k

- Setup used for past workshops
 - 2nd order central differencing
 - SA-RC turbulence model (SA-noft2 with rotation/curvature corrections)
 - full N-S, exact wall distance calculation
 - free stream initial conditions
 - fully turbulent boundary layer
 - linear vs. nonlinear stress model via QCR

Pleiades Supercomputer

- ➤ SGI ICE cluster with >200,000 cores of mixed processor type
- Utilized Ivy Bridge nodes with 2 ten-core processor per node

case	grid	points	cores	sec/it	sec/it/grid	iterations	wall clock
WB	medium	24.7M	20	3.1	12.5 x 10 ⁻⁸	10000	9 hrs
WB	ultrafine	82.7M	60	6.2	7.5 x 10 ⁻⁸	25000	43 hrs
WBNP	medium	39.5M	40	2.5	6.3 x 10 ⁻⁸	10000	7 hrs
WBNP	ultrafine	132.4M	80	4.1	3.1 x 10 ⁻⁸	25000	28 hrs

NASA

Overset Grid Summary and Cases Analyzed

Wing/Body (WB) and Wing/Body/Nacelle/Pylon (WBNP) Grid Family

Grid Level	Points	s (million)	Viscous			Max Stretching	
	WB	WBNP	Spacing	~y+	at Wall		
Tiny	7.4	11.9	0.001478"	1.02	4	1.235	
Coarse	14.4	23.0	0.001182"	0.80	5	1.186	
Medium	24.7	39.5	0.000985"	0.67	5	1.149	
Fine	39.1	62.6	0.000845"	0.58	6	1.128	
X-fine	58.2	93.2	0.000739"	0.50	7	1.112	
U-fine	82.8	132.4	0.000657"	0.45	8	1.099	

Case 1

SA, QCR-off

SA-RC, QCR-on

Case 2

SA-RC, QCR-off

SA-RC, QCR-off SA-RC, QCR-on

WB and WBNP

Case 3

SA-RC, QCR-on WB medium grid

Case 4

SA-RC, QCR-off

WB coarse grid

Convergence History Residuals for Mach 0.85, $C_L = 0.5$

Convergence History Lift and Drag for Mach 0.85, $C_L = 0.5$

> Shutting multi-grid off improved convergence for ultrafine grid and shifted force levels.

Test Case 1 Verification Study

Case 1: Verification Study Drag Convergence

OVERFLOW v2.2k

- Central differencing
- Matrix dissipation
- > SA turbulence model
- Rotation and Curvature (RC) corrections on/off
- > QCR on/off
- Multi-grid on except for finest grid level

Continuum Drag

 SA, QCR-off
 0.012276

 SA-RC, QCR-off
 0.011737

 SA-RC, QCR-on
 0.011782

2D NACA 0012 OVERFLOW Results

Mach = 0.15, $R_N = 6.0$ million, $\alpha = 10^{\circ}$, Fully Turbulent

Slide 8 of 28

Test Case 2 Nacelle/Pylon Drag Increment

Case 2: Nacelle/Pylon Drag Increment Effect of Wing Twist on WB Drag Level

Case 2: Nacelle/Pylon Drag Increment Effect of Grid Resolution and QCR

CRM WB and WBNP OVERFLOW Results

Case 2: Nacelle/Pylon Drag Increment Pressure and Skin Friction Drag Comparison

CRM OVERFLOW Results: QCR-on

Mach = 0.85, $R_N = 5.0$ million, $C_L = 0.5$, Fully Turbulent

- > Pressure drag at the continuum:
 - WB = .01427, WBNP = .01471

$$(\Delta C_D)_{PR} = 4.4 \text{ cts}$$

- > Skin friction drag at the continuum:
 - WB = 0.01117, WBNP = 0.01285

$$(\Delta C_D)_{SF} = 16.8 \text{ cts}$$

Case 2: Nacelle/Pylon Drag Increment Test Data vs. OVERFLOW

NASA

Test Case 3 Wing/Body Drag Polar

Case 3: WB Drag Polar Idealized Drag Polar Comparison

AIAA 2012-0707, Rivers/Hunter, "Support System Effects on the NASA Common Research Model"

Adding the model support system to the CFD model changes wing, tail and aft body pressures and decreases drag by ~25 counts at C_1 = 0.5 for the Wing-Body-Tail configuration

Case 3: WB Drag Polar Pitching Moment Comparison

Test Case 4 Wing/Body Grid Adaption

Case 4: WB Grid Adaption Background Information on Overset Grid Adaption

References

- 1. Buning, P. G., Pulliam, T. H., "Near-Body Grid Adaption for Overset Grids," June 2016.
- 2. Buning, P. G., Pulliam, T. H., "Cartesian Off-Body Grid Adaption for Viscous Time-Accurate Flow Simulation," AIAA 2011-3693, June 2011.
- 3. Lee, H. C., Pulliam, T. H., "Effect of Using Near and Off-body Grids with Grid Adaption to Simulate Airplane Geometries," AIAA 2011-3985, June 2011.
- 4. Buning, P. G., "A New Solution Adaption Capability for the OVERFLOW CFD Code," Overset Grid Symposium, September 2010.
- Feature-based adaption not driving integrated forces such as drag
- Sensor function is the undivided 2nd difference of flow variables (truncation error in flow gradient regions)
- Isotropic grid refinement (all 3 directions) where neighboring grids differ by 2x
- Parametric cubic interpolation of original near-body grid

Case 4: WB Grid Adaption Approach and Drag Results

		Adaption Parameters						Total		WingSrf	
Case	Initial Grid	Phase	Туре	Region	Limit	NB Levels	OB Levels	Points	Increase	Points	Increase
A	L6, ufine	n/a	none	n/a	n/a	n/a	n/a	82.8M		156.3K	
В	L2, coarse	n/a	none	n/a	n/a	n/a	n/a	14.4M		50.3K	
С	L2, coarse	1	gradient	wing, wake	100M	3	2 (wake)	98.3M	6.8x	387.6K	7.7x
D	L2, coarse	1	uniform	all zones	n/a	1	1				
		2	uniform	wing	n/a	2	0				
		3	gradient	wing, body	400M	3	2	388.9M	27x	895.1K	17.8x

Notes:

- > existing near-field and far-field box grids were used
- > gradient-based adaption used undivided 2nd difference for sensor function
- > NB = near-body, OB = off-body

Modified grid topology to satisfy boundary condition limitations → coarse grid point count and drag level changed.

Tracked number of surface grid points on the wing (S) instead of total number of points (N).

Slide 21 of 28

Case 4: WB Grid Adaption SOB Separation Bubble Comparison

> SOB separation is insensitive to grid refinement at the design condition even with QCR-off.

Case 4: WB Grid Adaption Wing Pressure Contours

➤ Wing shock structure is better defined in adapted solutions (C & D).

Case 4: WB Grid Adaption Wing Pressure Contours – Tip Region

- ➤ Wing tip shock structure characterized by a forward-swept lambda shape.
- ➤ This feature is not captured well by the ultra-fine grid suggesting uniform grid family refinement can fail to resolve some areas of the flow field.

Case 4: WB Grid Adaption Wing Surface Grid Comparison

➤ This surface grid comparison illustrates how feature-based adaption refines in high gradient regions as opposed to the uniform refinement done in Case A.

Case 4: WB Grid Adaption Wing Pressure Cut Comparison

Case 4: WB Grid Adaption Wing Pressure Cut Comparison

RN = 5.0 million Mach = 0.85 $C_1 = 0.5$

DLR F11 OVERFLOW Analysis

Conclusions

Verification Study

➤ Rotation and curvature corrections reduced continuum drag level by 5.4 counts (4.4%).

Nacelle/Pylon Drag Increment

- ➤ The 1° of wing washout between the designed and tested wings is predicted to increase drag by 5 counts at the design condition.
- ➤ OVERFLOW predicts a 21.2 count drag increase at the continuum due to the addition of the NP.
 - roughly 80% of this increment is skin friction drag
 - good agreement with Ames and NTF data

Wing/Body Drag Polar

➤ Modeling the as-tested wing twist pushes the computed data closer to experiment.

Wing/Body Grid Adaption

➤ Feature-based adaption can be better than uniform grid refinement in terms of resolving all shock features.

Thank You!

Back-Up

Case 4: WB Grid Adaption Pressure Contours

Case 4: WB Grid Adaption Wing Pressure Contours – OB Region

➤ Complex OB wing shock structure more evident with extreme grid resolution in Case D.

