NASA Common Research Model - Origins

- DPW1, DPW2, DPW3, DPW4 some consistent (experimental) desires identified
 - Need for a <u>modern/relevant</u> and <u>open/public</u> civil transport aircraft geometry suitable for applied CFD validation studies
 - Need for traditional and detailed flow measurements for CFD validation
 - Force/Moment/Shape/Pressure + skin friction, off body mean and unsteady data
- January 2007 post-DPW3 discussion with US aero leaders at a NASA Aero Technical Working Group meeting
 - Group definition of configuration, design guidelines
 - One "volunteer" at Boeing identified for detailed design/iteration with the group
 - NASA Fundamental Aeronautics/Subsonic Fixed Wing built and funded initial tests

NASA Common Research Model – Tests

National Transonic Facility at NASA Langley 2010, 2013

- Test Conditions
 - \circ Mach = 0.7 to 0.87
 - \circ Re_c = 5 to 30 million
 - Aeroelastic step at Re_c = 19.8 million
 - $\alpha = -3^{\circ}$ to $+12^{\circ}$ for $Re_c = 5$ million, $\alpha = -3^{\circ}$ to $+6^{\circ}$ for $Re_c = 19.8$ and 30 million
 - \circ T = -250°F up to 120°F
 - Five configurations
 - Wing/Body (WB), Wing/Body/Nacelle/Pylon (WBNP), Wing/Body/Tail=0° (WBT0), Wing/Body/Tail=+2° (WBT+2), Wing/Body/Tail=-2° (WBT-2)
 - Wind-on wing twist/deflection measurements taken

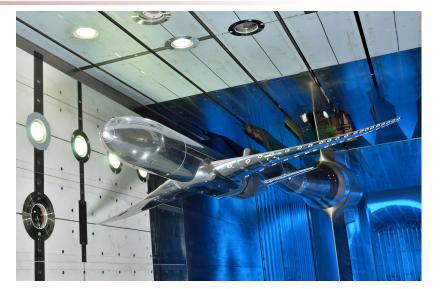
Corrections Applied

 Classical wall corrections accounting for model blockage, wake blockage, tunnel buoyancy, and lift interference

NASA Common Research Model - Tests

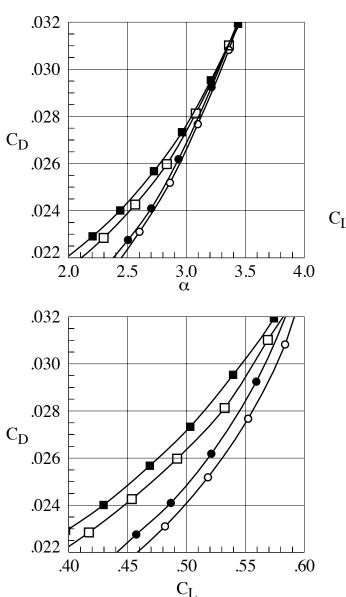
11-ft Transonic Wind Tunnel at NASA Ames 2010

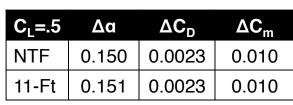
- Test Conditions
 - \circ Mach = 0.7 to 0.87
 - \circ Re_c = 5 million
 - \circ $\alpha = -3^{\circ}$ to $+12^{\circ}$
 - \circ T = 100°F
 - Five configurations
 - Wing/Body (WB), Wing/Body/Nacelle/Pylon (WBNP), Wing/Body/Tail=0° (WBT0), Wing/Body/Tail=+2° (WBT+2), Wing/Body/Tail=-2° (WBT-2)
 - PSP, skin friction, PIV data obtained
- Corrections Applied
 - Classical wall corrections accounting for model blockage, wake blockage, tunnel buoyancy, and lift interference

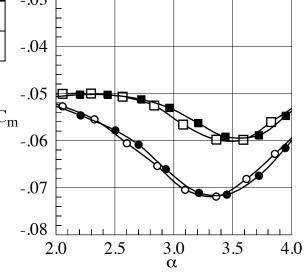


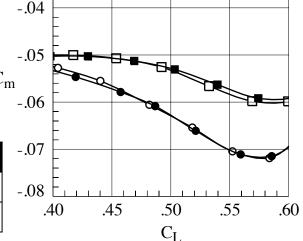
NASA Common Research Model - Tests

ESWIRP* Consortium European Transonic Windtunnel in Cologne, Germany 2014

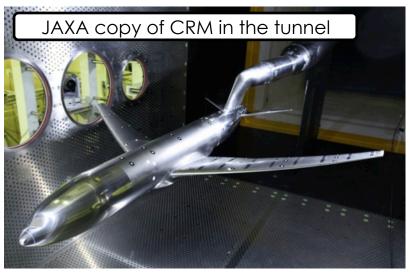

- Test Conditions
 - \circ Mach = 0.7 to 0.85
 - \circ Re_c = 5 to 30 million
 - Aeroelastic step at Re_c = 19.8 million
 - $\alpha = -3^{\circ}$ to $+12^{\circ}$ for $Re_c = 5$ million, $\alpha = -3^{\circ}$ to $+6^{\circ}$ for $Re_c = 19.8$ and 30 million
 - \circ T = -249°F up to 83.93°F
 - Only Wing/Body/Tail=0° (WBT0) configuration
 - Wind-on wing twist/deflection measurements taken
- Corrections Applied
 - Corrected for wall interference based on the ETW experimental assessment established in the past


Comparison of NTF and Ames 11-Ft data

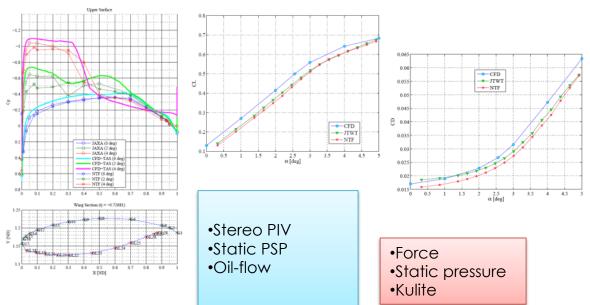

Nacelle/Pylon Increment – M=0.85, $Re_c = 5 \times 10^6$

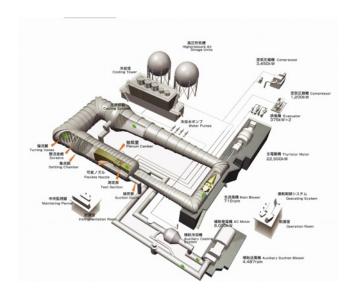


– IVI=0 a=3°	0.85, R ΔC _ι	$e_c = 5$	X10° ΔC _m	l
NTF	-0.022	0.0008	0.014	03
11-Ft	-0.019	0.0007	0.013	04
.55				05 06 07 08
.40 2.0	2.5	3.0 3.5 a Config		03 04
•	NTF Test Ames 11ft To NTF Test	197 WB est 216 WB	44	05 Sm



Ames 11ft Test 216 WBPN

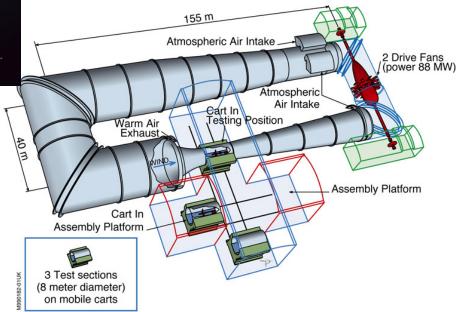



JAXA CRM test

JAXA 2m x 2m transonic wind tunnel

- Closed-circuit and continuously operating facility
- Test section dimensions:
 - 2(w)x2(h)x4.13(l) m
- Reynolds number
 - 2.3M. (NASA NTF: Re=5M, 20M)
- Angle of attack
 - From -2 to 7 deg.

ONERA LRM test


ONERA LRM

ONERA S1MA wind tunnel

- Continuous flow, atmospheric wind tunnel
- Mach 0.05 to Mach 1
- Angle of attack range = 45 deg
- Test section dimensions:
 - 45 m²

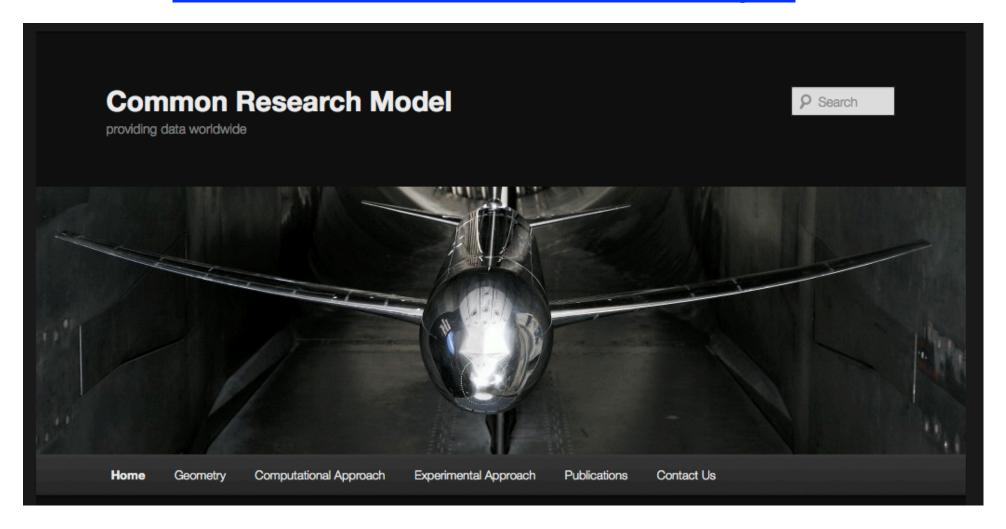
- WBVH (VTP designed by ONERA)
- All configurations tested
- Mounted on Z-STING
- Real time corrections
- Wing shape rebuilt to have the NTF loaded shape at cruise point
- Force
- Static pressure
- Wing deformation
- Acenaphtene visualizations
- Colored visualizations

Upcoming Test

National Research Council 5-ft Trisonic Tunnel

in Ottawa Canada FY 2017

- Pressurized, intermittent flow tunnel
- Half model test using port wing, horizontal tail, and nacelle/pylon of CRM
- Test section dimensions:
 - -1.5m x 1.5m
- Reynolds number
 - 7M (NASA NTF: Re=5M, 20M)


NASA Common Research Model - other

- A CRM high-lift and an active flow control enabled high-lift system are being developed
- NASA and others are using the CRM as a basis for structural and aero/ structural design optimization
- JAXA has performed 2D CRM airfoil tests
- Several Universities are using the CRM as a part of design classes

http://commonresearchmodel.larc.nasa.gov/

