# **Drag Prediction Workshop**

June 2001 Anaheim, California, USA

J J Doherty, A Shires, J E Alderman



Centre for Aerospace Technology Future Systems Technology Division



## CFD method

- CFD pre-processing
  - GEMS tool used to configure DLR F4 IGES geometry into definition suitable for CFD
- → SAUNA<sup>TM</sup> grid generation and flow solver
  - Rapid, high accuracy modelling of aircraft aerodynamics in analysis and design using structured multi-block grids
  - Developed and validated by DERA
  - Central to aerodynamics work at DERA for the past 15 years
- Calculations performed
  - → Case 2 drag polar, M = 0.75,  $\alpha$  = -3°, -2°, -1°, 0°, 1°, 2°
  - unable to import provided grid





# SAUNA grid generation 1

- structured, multi-block grid
  - surface elliptic grids generated at each of the airframe and far-field surfaces as well as 'control' planes in the field
  - surface grids are edited to maximise grid quality
  - an elliptic field grid is generated within the domain between the bounding surfaces
- 'automatic' wing/body Euler grid generated in approx. 20 minutes using AMESH tool
  - requires extension of rear fuselage using sting
- Euler field grid refined in blocks adjacent to wing and body for viscous calculations





# SAUNA grid generation 2





## SAUNA flow solver

- explicit, time-marching
- finite volume, cell-vertex
- convergence acceleration using multi-grid and implicit residual smoothing
- \* k-ω turbulence model, no transition
- convergence monitored on mean residuals



platform used: SGI Origin 200, single processor

memory req: 772 MBytes

cpu time: 68 hours approx











#### Measured and predicted pressure coefficient distributions









#### Measured and predicted pitching moment coefficient







### Measured and predicted drag coefficient



## Summary

- 'automatic' grid generated rapidly using minimum effort
- grid contains 1,440,000 field cells, significantly smaller than provided grid
- very good agreement between predicted and experimental pressure distributions, lift curve slopes, and pitching moment coefficients
- drag trends are well represented, with predicted drag approximately 15 counts higher than experiment

