AIAA CFD Drag Prediction Workshop

Thomas Scheidegger, Greg Stuckert, Sutikno Wirogo

Fluent Inc.

Anaheim CA, June 9-10, 2001

DLR-F4 Wing-Body Simulations

- Fluent5 Unstructured solver
- Drag polar for M=0.75, Re=3.0x10⁶ (case 2) on provided (standard) grid
- Selected points on optional ICEM CFD grid
- Grid quality and convergence behavior

Fluent5 Settings

- Cell-centered unstructured on hybrid meshes
- Segregated implicit (pressure based, SIMPLE) and coupled implicit solver
- Second-order upwind reconstruction
- Algebraic Multigrid
- Realizable k-ε turbulence model
- Two-layer zonal model for wall treatment

Lift - ICEM Grid

Drag - ICEM Grid

Viscous Drag

Moment - ICEM Grid

Grid Quality

Grid Quality - Skewness

Standard grid

ICEM grid

Histogram of Cell Quality, Equilateral Volume Deviation Method

Jun 05, 2001 TGrld 3.4 (3D) Histogram of Cell Quality, Equilateral Volume Deviation Method

Jun 05, 2001 TGrid 3.4 (3D)

Grid Quality - Skewness

Standard grid

ICEM grid

Histogram of Cell Quality, Equilateral Volume Deviation Method

Jun 05, 2001 TGrid 3.4 (3D) Histogram of Gell Quality, Equilateral Volume Deviation Method

Jun 05, 2001 TGrid 3.4 (3D)

Grid Quality - Size Change

Standard grid

ICEM grid

Histogram of Cell Quality, Size Charge Method

Jun 05, 2001 TGrid 3.4 (3D) Histogram of Cell Quality, Size Change Method

Jun 05, 2001 TGrid 3.4 (3D)

Grid Quality - Squish

ICEM grid

Histogram of Cell Quality, Squish Method Jun 05, 2001 TGrid 3.4 (3D) Histogram of Cell Quality, Squish Method Jun 05, 2001 TGrid 3.4 (3D)

Standard Grid - y+

Coupled solver, $\alpha = 1^{\circ}$

ICEM Grid - y+

Coupled solver, $\alpha = 1^{\circ}$

Pressure Distribution

Coupled solver - ICEM grid

Pressure Coefficient Jun 07, 2001 FLUENT 5.5 (3d, coupled imp, rke)

Pressure Distribution

Coupled solver - ICEM grid

Pressure Distribution

Coupled solver - ICEM grid

Convergence - ICEM Grid

Scaled Residuals May 29, 2001 FLUENT 5.5 (3d, coupled imp, rke)

Convergence - Standard Grid

Scaled Residuals

Jun 06, 2001

FLUENT 5.5 (3d, dp, coupled imp, rke)

Conclusions

- Results and convergence behavior depend strongly on quality of mesh.
- Standard workshop grid resulted in poor convergence and large overprediction of drag.
- Considerable improvement of results on ICEM grid.
- Coupled (density based) solver recommended for transonic drag prediction.
- Discrepancies between segregated and coupled solver likely due to first-order density reconstruction in compressible segregated solver.