DRAG PREDICTION WORKSHOP RESULTS USING THE PARALLEL UNSTRUCTURED MULTIGRID SOLVER NSU3D

D. J. Mavriplis
ICASE
NASA Langley Research Center
Hampton, VA 23681-21997
USA

AIAA Drag Prediction Workshop

June 9-10, Anaheim, CA

NSU3D SOLVER

- Discretization
 - Mixed Element Unstructured Grid Solver
 - Edge-Based Data-Structure
 - Roe-Rieman Solver (Matrix Dissipation)
- Solution Technique
 - Agglomeration Multigrid
 - Line / Point(Jacobi) Preconditioning
 - Optional Low Mach Number Preconditioning
- Hardware Compatibility
 - Vector or Cache Based Optimizations
 - Shared or Distributed Memory Parallelization
 - Combined MPI-OpenMP Parallelization

SCALABILITY ON SMALL AND LARGE MACHINES

- 3 million point problems in 5 to 6 hours on commodity cluster
- Up to 25 million point in 1 hour on 1450 cpu T3E

DLR-F4 UNSTRUCTURED GRIDS

- Computations Performed on 3 Unstructured Grids
 - Baseline Workshop Grid: 1.6 million points
 - Uniform Refinement : 13 million points
 - Intermediate Grid : 3 million points
 - * Generated and Computed by D. Levy, Cessna Aircraft
 - · (not included herein)
- Tetrahedral Grids (VGRID) Converted to Mixed Prism-Tetrahedral
 Grids by Merging Thin Tet Layers in Boundary Layer Regions
 - Baseline : 1.65 million points, 9.7 million Tetrahedra
 - * 2 million Prisms, 3.6 million Tetrahedra
 - Fine Grid: 13 million points, 77.6 million Tetrahedra
 - * 16 million Prisms, 28.8 million Tetrahedra

SAMPLE SOLUTION AND CONVERGENCE RATE

- Force Coefficients Converged in 250 Cycles for this case
- Higher Incidences May Require More Cycles
- All Cases run 500 to 600 Multigrid Cycles

REQUIRED COMPUTATIONAL RESOURCES

- Baseline Grid: 1.6 million points : 500 MG cycles
 - 3 Gbytes, 3 hours on 32 800MHz Pentiums
 - 3.3 Gbytes, 45 minutes on 64 Procs of SGI Origin 2000(400MHz)
- Refined Grid: 13 million points: 500 MG cycles
 - 27 Gbytes, 4 hours on 128 Procs of SGI Origin 2000(400MHz)

CONSTANT CL CASES

- Compute Full Drag Polars for Each Mach Number
- Get Interpolated Incidence on Polar for Prescribed Lift Value
 - Cubic Spline Fit (in TECPLOT)
- Recompute Flow at Interpolated Incidence Value
- Interpolate Force Coefficient from Closest Points on Polar to Prescribed Lift Value
 - Interpolated Incidence Value Very Close to Prescribed Lift Value
 - Minimal Interpolation Errors

CASES RUN

- BASELINE GRID: 1.6 million points
 - Full Drag Polars for Each Mach Number
 - Interpolated Incidence on Polars at Prescribed Lift Value
 - Total: 72 cases
- FINE GRID: 13 million points
 - Computed Drag Polar at Mach = 0.75
 - Computed C_L =0.5 case at Mach=0.75
 - Total: 6 cases

BASELINE GRID CASES

- Full Polars for All Mach Numbers
- Total of 72 Cases
- About 1 Week on Pentium Cluster

DRAG POLAR COMPARISON WITH EXPERIMENTAL DATA

DRAG POLAR COMPARISON WITH EXPERIMENTAL DATA

• Increased Discrepancies at Higher Mach Number and Lift

DRAG RISE COMPARISON WITH EXPERIMENTAL DATA

- Reasonable Overall Comparison for Relatively Coarse Grid
- Increased Discrepancies at Higher Mach Number and Lift

FINE GRID IMPROVEMENT OF M=0.75 DRAG

- Fine Grid (13 million pts) is 8 way Refinement of Baseline Grid
 - Improved Drag prediction throughout Polar

DISCREPANCY IN LIFT FOR BOTH GRIDS

- Fine Grid (13 million pts) 8 way Refinement of Baseline Grid
 - Increased Lift on Fine Grid at Same Incidence

STATION CP PLOTS AT M=0.75, CL=0.6

- Compare CFD and Experimental Results
 - Matching Incidences
 - Matching Lift Values

STATION CP PLOTS AT M=0.75, CL=0.6

- ullet Shock Location Agrees for Matched C_L Case
- Expansion Rooftop Agrees for Matched Incidence Cases
- Biggest Differences at Outboard Stations

CAPTURED FLOW DETAILS AT M=0.75, CL=0.6

- Small Separation at Shock and Trailing Edge
- Vortex at Wing Root

SUMMARY

- Baseline Grid (1.6 million pts) Provides Reasonable Overall Prediction of Force Coefficients and Drag Rise
- Enables Parameter Studies on Inexpensive Cluster Machines
 - 72 cases run in 1 week
- Enhanced Accuracy with Finer Grids
 - 3 million points, 13 million points
 - Grid Resolution Effect Requires more Quantification
- Experimental Lift Values Lower than CFD
 - Transition
 - Turbulence Modeling
- Combined Results (with D. Levy) to be presented at Reno 2002