

#### **BOMBARDIER** *AEROSPACE*

# DLR-F4 Results using Bombardier Aerospace Full-Aircraft Navier-Stokes Code FANSC

Eric Laurendeau

Engineering Specialist
Advanced Aerodynamics, Montreal

Josee Boudreau

Aerodynamicist
Advanced Aerodynamics, Montreal

AIAA CFD Drag Prediction Workshop, Anaheim, CA June 9-10 2001

#### **BOMBARDIER Outline AEROSPACE**

- Description of FANSC
- DLRF4 Results:

  - ConvergencePressure Distribution
  - •Forces
- Conclusions

## Developed in House under a multi-year Defense/Industry Research Program which included:

- Development of a grid-generation package (MBGRID)
- Development of structured and unstructured Navier-Stokes methods for full-aircraft configurations

## **Flow Solver**

- Multi-block structured domain decomposition
- Finite-volume discretization (cell-centered)
- Explicit artificial dissipation (JST, AUSM, CUSP)
- Explicit Runge-Kutta scheme

## **Acceleration techniques**

- Full-multigrid algorithm
- Local time stepping
- Implicit residual smoothing, directional scaling for high aspect ratio meshes
- Coarse-grain parallelization on blocks (3.6/4 CPU)
- Vectorization (94% efficient)

## **Boundary Conditions**

- No-Slip/Slip Wall
- Transpiration Wall (Boundary-Layer Coupling)
- Symmetry, Degenerate line/point
- Riemann, Engine Inlet/Outlet
- Multiple boundary condition per block face

#### **Turbulence Model**

- Spalart-Allmaras one-equation with/without wall functions
- Discretized and solved as described in their 1992 paper
- Loosely coupled
- Computed on fine grid only (weighted-average and frozen on coarse grids)
- Zero turbulent eddy viscosity at solid walls on all grid levels

## **Hardware**

## Run-time (for provided mesh)

- 9.0 hours on 4 CPU
- 2.4 Gbytes Memory Requirements

#### **Hardware**

- 8-CPU Cray SV1
- 8 Gbytes RAM
- 1.2 Gflops/CPU

## DLR-F4 Results: Convergence (DPW grid)









## **DLR-F4 Results (M 0.60 CL 0.50)**



## **DLR-F4 Results (M 0.80 CL 0.50)**



## DLR-F4 Results (M 0.75 a = 1.0 deg.)



#### **MBGRID** mesh

 An internally generated mesh of the DLRF4 configuration using Bombardier Aerospace MBGRID grid-generation package was produced:

Orthogonality of the mesh on the body surface

10e-6 wall spacing

3 Million mesh points, open wing-tip, blunt trailing edge

- Similar convergence as when the DPW mesh is used

## DLR-F4 Results (M 0.75)

The solid line prediction lies in line with the most accurate unstructured CFD results presented at the DPW.



## DLR-F4 Results (M 0.75)

The solid line prediction lies in line with the most accurate unstructured CFD results presented at the DPW.



## DLR-F4 Results (M 0.75)

The solid line prediction lies in line with the most accurate unstructured CFD results presented at the DPW.



- FANSC showed excellent convergence characteristics (density and turbulent viscosity) on the required grid, despite its excessive skewness
- Integrated lift and pitching moment predictions on the required grid were accurate, but mesh skewness introduced discretization errors on the skin-friction evaluations (Pressure drag was correctly predicted)

- Results obtained with FANSC on an internally generated mesh using the MBGRID grid-generation package resulted in accurate lift, pitching moment and drag prediction, as was expected from our industrial experience.
- The overall performance of FANSC in terms of robustness, convergence and accuracy at this drag workshop ranks it as one of the best Navier-Stokes code available.

- It was unfortunate that the DPW structured mesh was not better suited for the problem in hand. However, it did provide a basis for evaluating the robustness of the structured codes.
- The enthusiasm present at the workshop was very encouraging and demonstrated the need to pursue further research in this area.

- Bombardier Aerospace whishes to thank the DPW committee for their efforts in organizing the event.