AIAA CFD Drag Prediction Workshop (9-10 June 2001, Anaheim, CA, USA)

- Stéphane AMANT,
 French PhD student in aerodynamics
- Graduate engineer from SUPAERO
- Employed by Airbus France (Toulouse, France)
 - Department : Aerodynamics
 - Team: Methods of calculation for aerodynamics

Problems encountered during the calculations on the DPW structured grid

Experimental data:

- $-CL = 0.5 \text{ for } \alpha \approx 0.2^{\circ}$
- Balance data : $CD_{total} \approx 290.10^{-4}$ at CL = 0.50

Computational results:

- $-CL = 0.5 \text{ for } \alpha \approx 0.75^{\circ} !!!$
- Surface integration : $CD_{total} = 465,6.10^{-4}$ at CL = 0.500
 - ... with $CD_{friction} = 248,3.10^{-4}$!!!

Reynolds number OK: problem with the grid?

Brief description of the grids

DPW grid:

- structured multiblock grid
- 3 394 000 grid points
- O topology with junctures at 45°

Airbus France grid:

- structured multiblock grid
- Euler mesh: 3 204 000 grid points
- C topology with junctures at 90°
- ⇒ automatic generation of the Navier-Stokes mesh with a refinement tool (5 324 000 grid points)

Comparison of the skin friction (2/2)

Relationship with the grid

Drag breakdown: illustration of the far-field method

DLR-F4: spatial localization of the sources of drag (NSMB calculation on EADS Airbus grid)

Drag breakdown: numerical results

* Near-field method:

$$-$$
 Cd _{friction} = 141,1.10-4

$$-$$
 Cd _{pressure} = 164,9.10-4

$$\Rightarrow$$
 Cd _{total} = 306,1.10-4

Far-field method:

$$- Cd_{wave} = 1,8.10-4$$

$$-$$
 Cd _{viscous pr.} = 60,6.10-4

$$-$$
 Cd _{induced} = 95,3.10-4

$$-$$
 Cd _{friction} = 141,1.10-4

$$\Rightarrow$$
 Cd _{total} = 298,7.10-4

(closer to the experiment)

(effect of the forced transition \approx -10.10-4

$$\Rightarrow$$
 Cd _{total} \approx 288.10-4)

20,3%