AIAA CFD Drag Prediction Workshop

Wind Tunnel Data

Richard A. Wahls

Purpose

- To provide further discussion on the wind tunnel data used for reference in this workshop
 - based primarily on description in AGARD AR-303, Vol. II G.Redeker
 - Highlight some of the challenges for test-to-test & facility-to-facility comparisons

Initial Thoughts

- One model Three facilities
- Good agreement from facility to facility is challenging
 - facility differences, including model mounting
 - Instrumentation differences
 - Data acquisition, reduction, and "correction" differences
 - Repeatability of "unchanged" items
 - Model part fit, transition grit application, filler, etc.

Wind Tunnel Facilities

- 3 facilities, single model
 - some general differences

	Facility -> DRA 8' x 8' Bedford	NLR - HST	ONERA - S2MA
Test Section Dim. (m)	2.44W x 2.44H x 14L	2.00W x 1.60H x 2.70L	1.75W x 1.77H x 5.40L
Acs (m^2)	5.954	3.2	3.098
Max Model Blockage	0.44%	0.81%	0.84%
Wing Area/Acs	2.44%	4.54%	4.69%
Model Span/A, width	47.99%	58.55%	66.91%
		12% open ceiling & floor	Perforated ceiling & floor
Walls	Solid		6% geometric porosity max
		solid side walls	solid side walls
Model mount	straight sting	NLR Z sting	ONERA Z sting
Flow Angularity	~0.03 deg	~0.2 deg	not reported
	measured upr/inv	measured upr/inv	measured upr/inv
June 9-10	AIAA CFD Drag Prediction Workshop		Anaheim, CA 4

ETW Reference Model (DLR-F4)

From J.Quest

- ETW model
 - •~22.5% larger than used at DRA, NLR, & ONERA
- Multiple mounts
 - •similar to those used in other WT

June 9-10

AIAA CFD Drag Prediction Workshop

Anaheim, CA

Instrumentation

	Facility ->	DRA 8' x 8' Bedford	NLR - HST	ONERA - S2MA
Model position		support angle + bending	support angle + bending	onboard & support ang + bending
		±0.005 deg	±0.02 deg	±0.02 deg
Model Pressures		nominally the same in each facility		
Force & Moment		different balances used in each facility, primary components below		
NF, max (N)		7100	9220	20000
AF, max (N)		670	930	1700
PM, max (Nm)		750	461	1700

Experimental Procedures & Corrections

- "Data are corrected to free-air condition"
- Transition fixed similarly (loc, size, type)
- Corrections handled differently between facilities
 - Lift interference & blockage (various methods)
 - ONERA corrections at design pt: $\Delta M = -0.0001$, $\Delta CD = -5.9$ counts
 - Model support (various methods)
 - ONERA corrections at design pt: Δ CD = +19.2 counts
 - Aeroelastic deformation (all refer to NLR estimate of wing deformation)
 - Workshop grids based on NLR estimate of deformation
 - My experience in NTF --> CDvCL not affected, but CLvAoA and CLvCM are
 - Buoyancy
 - · Body alone or clear-tunnel based
 - ONERA correction to Δ CD = +7.1 counts, as an example

Variation of Drag w/ Rn (ETW)

Experimental Data

Documented Accuracy Assessment

_	Facility -> DRA 8' x 8' Bedford	NLR - HST	ONERA - S2MA
angle of attack	±0.01 deg	< ±0.02 deg	±0.02 deg
Mach	±0.001	< ±0.002	±0.001
CL	±0.004	< ±0.005	±0.006
CD	±0.0004	< ±0.0005	±0.0004
CM	±0.001	< ±0.002	±0.0014
СР	±0.002	< ±0.005	±0.001

Concluding Remarks

- More detail can be found in AGARD AR 303
- Numerous issues make facility-to-facility comparisons a challenging proposition
- There is noticeable data scatter between facilities
- All in all, the general agreement is pretty good
- 'Apples to apples' comparison between CFD & Experiment is often not as easy to achieve as it sounds