Buffet Working Group

Test Case 3

Version 2 September 16, 2025

aiaabuffet@gmail.com

Change Log

Version 2

- September 29, 2025
- Updated geometry link on Slide 9 to point to the official, NASA-hosted geometry

Version 1

- September 16, 2025
- First release

Test Case 3: Overview

- CRM wing/body/tail0 configuration
- Unsteady CFD with dynamic wing
- Includes fluid/structure interaction
- Simulations executed at wind-tunnel scale
 - Maximize consistency with dimensional FEMs and Test Case 2
 - Geometry and grids are model scale (2.16%)
- Test Case 3
 - Released 9/16/25
 - Data comparison to uPSP data set

Characteristic unsteady pressure field on a civil aircraft wing related to the onset of transonic buffet Research Article | Published: 08 January 2021 Volume 62, article number 20, (2021) Cite this article Download PDF Access provided by Japan Aerospace Exploration Agency Tsukuba Space Center

Yosuke Sugioka ☑, Kazuyuki Nakakita, Shunsuke Koike, Tsutomu Nakajima, Taku Nonomura & Keisuke Asai

Sugioka, Y., Nakakita, K., Koike, S. et al. Characteristic unsteady pressure field on a civil aircraft wing related to the onset of transonic buffet. Exp Fluids 62, 20 (2021). https://doi.org/10.1007/s00348-020-03118-yPaper: investigating copyright and ability to post

Data available on: to be determined

Experimental Test

2.16% scale CRM (80% scale of NASA model) tested in JAXA 2m x 2m transonic wind tunnel

- Reynolds numbers of 2.3 million
- Separate test, same model as Test Case 2 experiment
- Rich set of unsteady pressure-sensitive paint (uPSP)

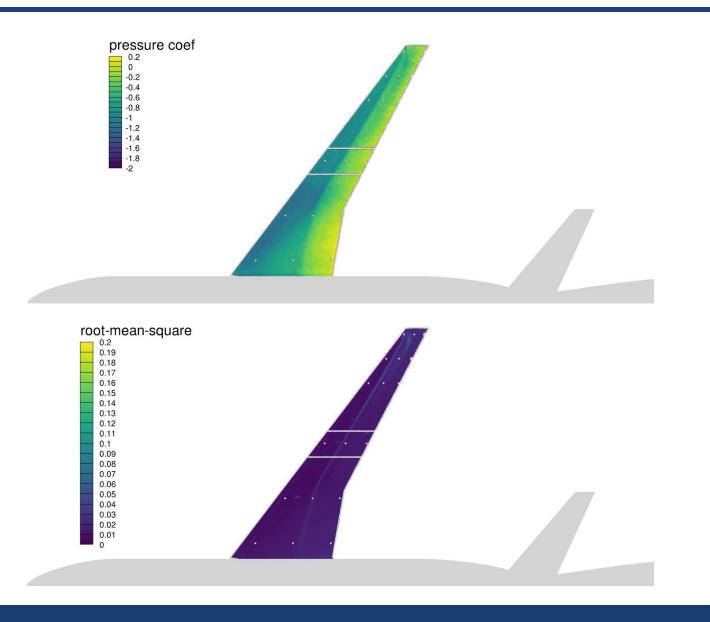
Model details

- 80% scale NASA CRM (2.16% full-scale vehicle)
- Wing/body/tail
- Wind-off wing shape is the as-defined (in 2008) 1-G shape (same as NASA CRM)

Corrections

- Data were re-reduced between paper publication and DPW-8/AePW-4
- Updated alphas are about 0.1 deg less than the paper alphas
- Use the workshop alphas

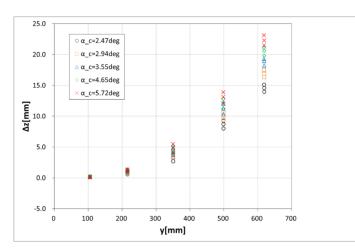
Experimental Data Available

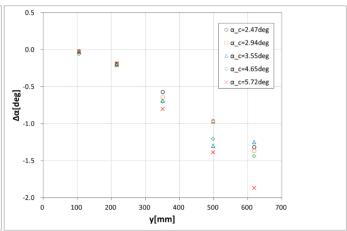


	Geometry	/ data		Balance	Pressure Sensors					
Alpha	Deformation data	CAD	FEM	Aerodynamic forces (CL,CD,CM)	Tap average pressure (n=0.5, 0.6)	Kulite RMS pressure (n=0.5, 0.6)	Kulite pressure histories (n=0.5, 0.6, one channel)	Kulite pressure PSD (n=0.5, 0.6, one channel)		
3.05	N/A									
3.61	N/A			Fig 10	Fig 6	Fig 7	N/A	Fig 8		
4.70	N/A									

	Strain	PSP											
Alpha	Wing-root strain gauge (buffet intensity coefficient)	PSP average pressure (n=0.5, 0.6)	PSP RMS pressure (n=0.5, 0.6)	PSP pressure PSD (n=0.5, 0.6, same x-location of Kulite channel)	PSP pressure PSD (n=0.5, 0.6, full x-St plane)	PSP average pressure (3D map on full wing)	PSP RMS pressure (3D map on full wing)	PSP Fluctuation snapshots (only a few* for one alpha)					
3.05 3.61 4.70	Fig 11	Fig 6	Fig 7	Fig 8	Fig 17	Fig 12	Fig 15	Fig 14					

PSP data





- PSP data mapped on the CRM jig shape
- .plt files contains (x,y,z)
 coordinates, "PSP average
 pressure coefficient" and "PSP
 RMS pressure" data
- Mask has been applied to regions where data are not reliable:
 - Unsteady pressure sensors lines
 - Markers
 - Areas near model edges

Deformation Measurements

	変形前の計測座標位置			$\alpha c = 2.47$		$\alpha c = 2.94$		$\alpha c = 3.55$		$\alpha c = 4.65$		$\alpha c = 5.72$	
			u_c - 2.47		u_c - 2.94		u_c = 3.33		a_c = 4.63		u_c = 3.72		
マーカID	x[mm]	y[mm]	z[mm]	Δz[mm]	$\Delta\alpha[deg]$	Δz[mm]	$\Delta\alpha[deg]$	Δz[mm]	$\Delta\alpha[deg]$	Δz[mm]	$\Delta\alpha[deg]$	Δz[mm]	Δα[deg]
101	558.358	105.170	-15.720	0.115		0.134		0.122		0.107		0.041	
102	651.408	105.210	-22.210	0.111	-0.021	0.144	-0.025	0.217	-0.028	0.252	-0.057	0.149	-0.028
103	744.008	105.190	-35.750	0.175		0.210		0.201		0.268		0.116	
104	632.318	215.670	-16.200	0.551		0.673		0.853		0.897		0.919	
105	699.538	215.650	-16.140	0.813	-0.191	0.996	-0.211	1.191	-0.198	1.151	-0.206	1.195	-0.187
106	766.558	215.700	-23.570	0.992		1.162		1.313		1.376		1.355	
107	728.958	350.750	-9.920	2.669		3.189		3.662		3.908		4.051	
108	780.298	350.680	-7.290	3.295	-0.572	3.822	-0.645	4.213	-0.690	4.483	-0.701	4.802	-0.800
109	831.768	350.710	-11.600	3.695		4.346		4.900		5.167		5.487	
110	836.318	498.890	5.170	7.991		9.351		10.299		11.227		12.091	
111	873.118	498.930	7.680	8.685	-0.966	10.102	-0.979	11.267	-1.301	12.148	-1.204	13.110	-1.386
112	910.188	498.920	5.400	9.237		10.613		11.976		12.778		13.878	
113	923.188	618.870	23.300	13.968		16.344		18.230		19.805		21.475	
114	948.268	618.880	25.620	14.580	-1.318	16.885	-1.366	18.959	-1.250	20.549	-1.440	22.259	-1.869
115	973.498	618.830	24.840	15.128		17.545		19.325		21.073		23.117	

- Deformation measurements for this campaign are NOT available
- However, deformations for similar flow conditions, angles of attack and geometry exist
 - These will be made available for qualitative comparisons with the FSI results

Simulation Conditions

- Recommended to use your best practices from Test Case 2
- Freestream settings
 - Mach 0.85
 - $-Re_c = 2.27m$ (based on chord length)
 - $-T_{total} = 326.15 \text{ K} (127.4 \text{ F})$
 - $-p_{total} = 120.0 \text{ kPa } (17.4 \text{ psi})$
 - $-q_{\infty} = 38.0 \text{ kPa } (5.51 \text{ psi})$
 - Alpha: 3.05, 3.61, 4.70 deg
- Grids
 - Baseline grid is Medium (L3)
 - Grid convergence study optional

Optional sensitivities

Time step, simulation length, turbulence model, etc.

Alpha	Purpose
3.05	Pre-buffet, close to design point
3.61	Buffet onset
4.70	Post buffet

Geometry and Grid Files

Committee-supplied CAD for undeformed wing geometry ("jig")

- CRM wing/body/tail (0 deg tail deflection)
- Jig wing geometry is available
 https://commonresearchmodel.larc.nasa.gov/geometry/dpw6-geometries/DPW6_CRM_wbnpt_ih+0_v09_201601-28 cf.*

Committee-supplied URANS grids

- Cadence, Helden, and Ames
 https://dpw.larc.nasa.gov/DPW8/Buffet/Test Case 3
- Recommended to use model-scale grids
- Model scale maximizes postprocessing consistency and FEM compatibility
- Scale-resolving schemes will need custom grids
- Provide custom grids to the committee for posting to the DPW site

Time Step Settings

Goal

- Resolve wing structural dynamics
- Capture as much of the spectra as reasonably possible

Recommended baseline settings

- 30 CTU after initial solution stabilized
- 100 time steps per CTU
- More CTU may be required to resolve frequency at high resolution

Limitations

- Computational resources will limit the user's selected time step and simulation time
- Utilize your best practice for iterations per CTU and simulation length

Data Submission

Required

- Integrated Forces and Moments
- Surface Cuts
- Time Series of a Single Point at Kulite coordinates
- Custom Grid Metrics (or clear reference to committee-supplied grids; this information must be submitted for inclusion in the ensemble analysis)
- Boundary Layer Profiles
- Geometry deformation data file (in preparation)
- Surface contour .plt file for each condition (submit via Box)

dpwaiaa@gmail.com