Buffet Working Group

Test Case 2a

Version 2 April 15, 2025

aiaabuffet@gmail.com

Change Log

Version 2

- April 15, 2025
- Added geometry file names for 1.22 and 2.29 cases

Test Case 2: Overview

- CRM wing/body/tail0 configuration
- Unsteady CFD with committee-supplied static wing geometry (no FSI)
- Simulations executed at wind-tunnel scale
 - Maximize consistency with dimensional FEMs
 - Geometry and grids are model scale (2.16%)
- Test Case 2a
 - Released 3/18/25
 - Detailed comparisons to experimental data (Data Set B.1)
- Test Case 2b (tentative)
 - To be finalized in the future
 - Comparisons to uPSP (Data Set B.2)

Koike, S., Ueno, M., Nakakita, K., and Hashimoto, A. "Unsteady Pressure Measurement of Transonic Buffet on NASA Common Research Model." AIAA Paper 2016-4044. AIAA Applied Aerodynamics Conference. Washington, DC. June, 2016. Paper: https://commonresearchmodel.larc.nasa.gov/wp-content/uploads/sites/7/2018/01/AIAA-2016-4044.pdf Data: https://cfdws.chofu.jaxa.jp/apc/dpw/upc.html

Experimental Test

- 2.16% scale CRM (80% scale of NASA model) tested in JAXA 2m x 2m transonic wind tunnel
 - Reynolds numbers of 1.5 and 2.3 million
 - Rich data set of steady and unsteady data
- Model details
 - 80% scale NASA CRM (2.16% full-scale vehicle)
 - Wing/body/tail
 - Wind-off wing shape is the as-defined (in 2008) 1-G shape (same as NASA CRM)

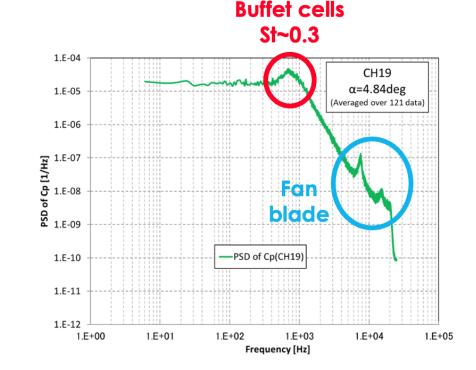
Data Set	Test Case	Wing	Re	Alpha	Static, Loaded Deformation	F&M	Static Taps	Kulites	Oil Flow	Wake PIV	TSP	PSP	uPSP	Strain Gauge	FEM	Release Status
A.1		Steady	~2.3	-2 to 6 every ~1.2 deg	X	Χ	X		Χ	X						Public
A.2		Steady	~2.3	-2 to 7	X	Χ	Χ				Χ	Χ				Requested
B.1	2a	Unsteady Wing #1	~1.5	1.22, 2.29, 4.84, 5.89	X	Χ		X								Partial
B.2		Unsteady Wing #2	~2.3	-2 to 7		Χ		Χ					Χ	Χ	Χ	Requested

Geometry and Grid Files

Committee-supplied CAD for experimentally-measured deformations

- CRM wing/body/tail (0 deg tail deflection)
- Note "updatednose" wording in CAD files
- 4.84 and 5.89 deg available now
- 1.22 and 2.29 deg being developed
 https://cfdws.chofu.jaxa.jp/apc/dpw/geometry.html

Committee-supplied URANS grids


- Cadence, Helden, and Ames
- Recommended to use model-scale grids
- Model scale maximizes postprocessing consistency and FEM compatibility
- Scale-resolving schemes will need custom grids
- Provide custom grids to the committee for posting to the DPW site https://dpw.larc.nasa.gov/DPW8/Buffet/Test_Case_2

Alpha	File Name
1.22	<pre>wbh_aoa122_buffet_deformed_ updatednose.iges.gz</pre>
2.29	<pre>wbh_aoa229_buffet_deformed_ updatednose.iges.gz</pre>
4.84	wbh_aoa484_buffet_deformed_updatednose.iges.gz
5.89	<pre>wbh_aoa589_buffet_deformed_ updatednose.iges.gz</pre>

Simulation Conditions

- Recommended to use your best practices from Test Case 1b
- Freestream settings
 - Mach 0.85, $Re_c=1.515m$ (based on chord length), $T_{total}=323.0$ K (121.7 F)
 - Alpha: 1.22, 2.29, 4.84, 5.89
- Experimental conditions (for reference):
 - $-P_{total} = 80 \text{ kPa}$
 - Trip dots at 10% chord on wing
 - Investigating location on nose and tail (an update will be provided in the future)
- Grids
 - Baseline grid is Medium (L3)
 - Grid convergence study optional for AoA=4.84
- Optional sensitivities
 - Time step, simulation length, turbulence model, etc.

Time Step Settings

Goal

- Resolve frequency peak at St=0.3
- Capture as much of the spectra as reasonably possible

Recommended baseline settings

- 30 CTU after initial solution stabilized
- 100 time steps per CTU
- More CTU may be required to resolve frequency at high resolution

Limitations

- Computational resources will limit the user's selected time step and simulation time
- Utilize your best practice for iterations per CTU and simulation length

Data Submission

Follow these instructions

https://aiaa-dpw.larc.nasa.gov/postprocessing.html

Required data

- Forces and Moments
 DPW8-AePW4 UnsteadyForceMoment v5.dat
- Surface cuts
 DPW8-AePW4_UnsteadySectionalCuts_v5.dat
- Spectral content
 DPW8-AePW4 UnsteadySpectra v5.dat

Spectral content at four locations

- Section E (eta = 0.5): x/c=0.3040 and 0.7903
- Section F (eta = 0.6): x/c=0.3097 and 0.7677

dpwaiaa@gmail.com