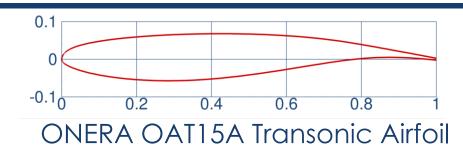
DPW-8 & AePW-4

Static Deformation Working Group

November 15, 2024

dpwaiaa@gmail.com
(working group specific email TBD

Administrative Information



- Meeting schedule
 - Third Friday of the month; 10:00 Eastern Time (will adjust with US Daylight Saving Time)
- For questions about the working group, please email dpwaiaa@gmail.com
- Websites
 - Static Deformation Working Group website
 https://aiaa-dpw.larc.nasa.gov/WorkingGroups/Group2/group2.html
 - Geometry/Grid websites
 https://aiaa-dpw.larc.nasa.gov/geometry.html
 https://aiaa-dpw.larc.nasa.gov/grids.html
 - Postprocessing website (including ONERA OAT15A experimental results)
 https://aiaa-dpw.larc.nasa.gov/postprocessing.html
 - Large File Upload
 https://nasagov.app.box.com/f/fd164563283b4e85857d1a0975b0b363

Test Case 1a: Workshop-Wide Validation

- Validation of steady CFD analysis, required
- Users are encouraged to employ best practices

Settings

- Steady CFD (e.g., RANS)
- Prefer some version of SA, multiple turbulence models can be submitted
- Purely 2D simulations (one cell wide)

Grids

- Six-member RANS grid family; four are required, six are desirable
- Encourage use of committee-supplied grids; user-generated grids are acceptable
- Committee-supplied grid is one cell wide with a 230mm chord (same as experiment) and follows RANS best practices

Conditions

- Mach 0.73, Re_c =3m (based on chord length), T_{static} = 271 K (487.8 R)
- Alpha: 1.36, 1.50, 2.50, 3.00, 3.10

Jaquin, et al. "Experimental Study of Shock Oscillation over a Transonic Supercritical Profiles." AIAA Journal, Vol. 47, No. 9, 2009. Pages 1985-1994.

Geometry

Geometry Webpage

- https://aiaa-dpw.larc.nasa.gov/geometry.html

- Test Case 1a: ONERA OAT15A (updated Sept 5, 2024)

https://aiaa-dpw.larc.nasa.gov/Geometry/ONERA-OAT15A-090524.zip

Test Case 1b: NASA CRM FEM Validation
 TBD

RANS Committee-Supplied Grids Status

- The ONERA OAT15A RANS committee-supplied grids have been updated
 - Intended to be used for RANS
 - Grids are one cell wide
- Participants are strongly encouraged, but not required to use these supplied grids for RANS simulations

- RANS gridding guidelines have been posted to the grids website (v3, July 1)
 - https://aiaa-dpw.larc.nasa.gov/ref/gridding_guidelines_v3_07012024.pdf

RANS Committee-Supplied Grids (Updated)

ONERA OAT15A grids posted to DPW webpage

- Helden Aerospace (HeldenMesh)

https://dpw.larc.nasa.gov/DPW8/Helden Grids.REV01/Helden-ONERA-OAT15A.zip

- Cadence (Pointwise)

https://dpw.larc.nasa.gov/DPW8/Cadence_Grids.REV01/Cadence-ONERA-OAT15A 230mmChord 780mmSpan upZ 2024 09 05 Structured.zip

https://dpw.larc.nasa.gov/DPW8/Cadence Grids.REV01/Cadence-ONERA-OAT15A 230mmChord 780mmSpan upZ 2024 09 05 Unstructured.zip

- ONERA

https://dpw.larc.nasa.gov/DPW8/Deck-ONERA Grids.REV00/Deck-ONERA-OAT15A.zip

Data Submission for ONERA OAT15A

- Please follow these instructions:
 - https://aiaa-dpw.larc.nasa.gov/postprocessing.html
- Case 1a
 - Grid Metrics:
 - https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4_CustomGridMetrics_v5.dat
 - Force/Moments:
 - https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4_ForceMoment_v5.dat
 - CP cuts:
 - https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4_SectionalCuts_v5.dat
 - Convergence:
 - https://aiaa-dpw.larc.nasa.gov/Forms/DPW8-AePW4_Convergence_v5.dat
- GitHub is being used to collect data files

Data Submission for ONERA OAT15A

- Submission Label
 - <### Participant ID>.<## Submission Number>
- Participant IDs (3 digits) will be assigned by Working Group leaders
 - Unique ID
 - One for each combination of Organization/Group of Participants
- Submission Number (2 digits) label a solver/grid/computational approach
 - Solver/Grid variations will be tracked with submission numbers
 - If a participant ran multiple turbulence models (SA/SST/SA-RC-QCR) with multiple grid families and solvers for Test Case 1a (ONERA OAT15A), they could use:
 - ###.01 for SolverA on Cadence Unstructured grids with SA-neg
 - ###.02 for SolverA on Cadence Unstructured grids with SST
 - ###.03 for SolverA on HeldenMesh grids with SA-neg
 - ###.04 for SolverB on HeldenMesh grids with SA-neg
 - ###.05 for SolverB on HeldenMesh grids with SA-neg-RC-QCR
 - Submission Numbers may change across Test Cases, Participant IDs will not
 - No need to maintain common Submission Numbers

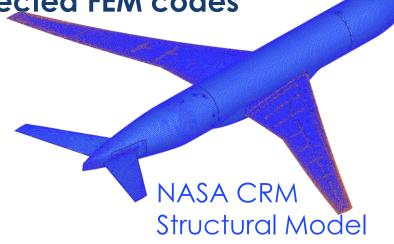
Test Case 1b: FEM Validation

Validation of Structural Model for NASA CRM

- Tap Test planned for comparison to normal mode solutions of FEM models
- Static Loads Tests will be conducted to compare deflection measurements (and maybe twist) to Linear Static FEM solutions

Users are encouraged to employ best practices for selected FEM codes

Settings


Linear Eigenvalue Analysis (e.g. NASTRAN® SOL103)

Conditions

Rigid suspension at sting

Grid

- MSC NASTRAN® solid 4-node tetrahedral finite-element structural model
- Model consists of 6.8 · 106 elements, 4.1 · 106 degrees-of-freedom
- Supplied by NASA Langley's Configuration Aerodynamics Branch
- Wind tunnel sting will be added as beam model

Test Case 2a: Wing/Body Deformation

CFD/FEM start from unloaded (wind-off) geometry/grid

CRM Wing/Body

Reynolds numbers: 5M (LoQ) [Available: 5M(LoQ),20M(LoQ),20M(HiQ),30M(HiQ)]

- Mach Number: 0.85 [Available: 0.70, 0.85, 0.87]

Angle of Attack: 3.00 deg [Available: -3.0 – 12.0 deg]

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Test Case 2b: Wing/Body Deformation (polar) @AIAA

- CFD/FEM start from unloaded (wind-off) geometry/grid
- CRM Wing/Body
 - Available Reynolds numbers: 5M (LoQ), 20M (LoQ), 20M (HiQ), 30M (HiQ)
 - Range of Mach numbers: 0.70, 0.85, 0.87 (Mcruise = 0.85)
 - Range of Angles of attack: -3.0 12.0 deg (AOAcruise ~ 2.75-3.00 deg)

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Test Case 3: Wing/Body/Nacelle/Pylon

- CFD/FEM start from unloaded (wind-off) geometry/grid
- CRM Wing/Body/Nacelle /Pylon
 - Available Reynolds numbers: 5M (LoQ)
 - Range of Mach numbers: 0.70, 0.85, 0.87 (Mcruise = 0.85)
 - Range of Angles of attack: -3.0 12.0 deg (AOAcruise ~ 2.75-3.00 deg)

Committee-supplied

- NASA CRM geometry in jig/unloaded condition
 - Trip location, if tested (optional to use)
- MSC NASTRAN® finite-element model of the NASA CRM
- Grid Family (L1:<u>Tiny/L2:Coarse/L3:Medium/L4:Fine/L5:eXtra-fine/L6:Ultra-fine)</u>

Comparison metrics

- Forces / Moments
- Sectional Twist / Deformation
- Sectional C_P distribution

Key Questions

- Specific questions that the Working Group will answer throughout the Workshop
 - Q1:
 - **■** S
 - Q2:
 - S
- Example "Key Questions" for the Static Deformation Group
 - How accurately can transonic wing deformation be calculated?
 - What is the uncertainty in configuration force/moments due to aeroelastic deformation uncertainty?
 - What are the most efficient/accurate methods for coupling the aero/structural computations?
 - What are the computational time/accuracy savings between using a full fidelity vs reduced beam structural model?
 - Do modal solutions compare well to direct fluid-structure mapping solutions?
 - Does a full vs symmetry plane solution result in different solutions?
 - How much accuracy is lost by using a "lower fidelity" aerodynamic simulation (i.e. panel methods or vortex lattice)?

Nominal Schedule

- June, 2024
 - First Working Group Meeting
 - ONERA OAT15A geometry release ✓
- July, 2024
 - ONERA OAT15A grids released ✔
 - AVIATION in-person meeting
- November, 2024
 - All workshop virtual meeting (11/8)
 - First look of Test Case 2/3 grids
- Winter, 2024
 - FEM Validation Data released
- January, 2025
 - SciTech Forum: Mini Workshop 1

- July, 2025
 - AVIATION in-person meeting
 - (Special Session: ONERA OAT15a?)
- Summer/Fall, 2025 (?)
 - Mini Workshop 2
- January, 2026
 - SciTech in-person meeting
- February, 2026
 - Delivery of final data set (perhaps alternate submissions prior to this date)
- June, 2026
 - Workshop in San Diego, CA

Working Group Meeting Cadence

- Currently set up for 10:00 Eastern time on third Friday of each month
 - A suitable meeting time is very difficult for global participants
 - Recurring meeting invite sent
- Next meeting: Friday, November 15th
 - Individuals or teams are welcome to present preliminary analysis for test case 1a (ONERA OAT15A Airfoil)
 - Please contact <u>ben.j.rider2@boeing.com</u> if you are interested to present grids or solutions

Backup

Static Deformation WC: November 15th, 2024

Static Deformation Working Group Leadership

- Stefan Keye, DLR
- Garrett McHugh, NASA Langley
- Ben Rider, The Boeing Company